依旧看人代码写,不过我觉得自己慢慢写一个也可以写成?

原题:

阿申准备报名参加GT考试,准考证号为N位数X1X2....Xn(0<=Xi<=9),他不希望准考证号上出现不吉利的数字。
他的不吉利数学A1A2...Am(0<=Ai<=9)有M位,不出现是指X1X2...Xn中没有恰好一段等于A1A2...Am. A1和X1可以为
0

N<=10^9,M<=20,K<=1000

一开始完全是懵逼的,后来找到两个解释结合一下就理解了

用a(i,j)表示原串走到i,不吉利的串走到j的方案数

设一个数组b(i,j),表示从(i,j)转移到(i+1,k)的方案数,这个可以用kmp处理,先kmp出next,然后枚举i和j,根据kmp求出k并将b(i+1,k)++

然后这个b表示的就是a中的元素下一步会贡献到哪里

这个东西比较玄,只能勉强意会……

NOIP吧里有一种解释,虽然写法似乎和我的不太一样,引导思路效果不错:

“构造转移矩阵A和列向量B,B=(f[0][0],f[0][1],...,f[0][m]),A可以由DP得到,那么A*B的结果就是(f[1][0],f[1][1],...,f[1][m]),所以A^n*B的结果就是(f[n][0],f[n][1],...,f[n][m])”

然后矩阵快速乘即可

小技巧:使用a&1判断奇偶

代码:

 #include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
using namespace std;
int n,m,mo,s[];
int next[];
int b[][],a[][],c[][];
int ans=;
void kmp(){
int temp=; next[]=;
for(int i=;i<=m;i++){
while(temp && s[temp+]!=s[i]) temp=next[temp];
if(s[temp+]==s[i]) temp++;
next[i]=temp;
}
}
void get_b(){
int temp;
for(int i=;i<m;i++){//注意j枚举的是下一位,因为这里j是对下一位的转移,所以矩阵乘法从0开始写,比较方便
a[i][i]=;
for(int j=;j<=;j++){
temp=i;
while(temp && s[temp+]!=j) temp=next[temp];
if(j==s[temp+]) b[i][temp+]+=;
else b[i][]+=;
}
}
}
void fast_mi(){
while(n){
if(n&){//快速判断奇偶
for(int i=;i<m;i++)
for(int j=;j<m;j++){
c[i][j]=;//反正也要枚举,就不用memset了
for(int k=;k<m;k++)
c[i][j]=(c[i][j]+b[i][k]*a[k][j])%mo;
}
for(int i=;i<m;i++)
for(int j=;j<m;j++)
a[i][j]=c[i][j];
}
n>>=;
for(int i=;i<m;i++)
for(int j=;j<m;j++){
c[i][j]=;
for(int k=;k<m;k++)
c[i][j]=(c[i][j]+b[i][k]*b[k][j])%mo;
}
for(int i=;i<m;i++)
for(int j=;j<m;j++)
b[i][j]=c[i][j];
/*for(int i=0;i<m;i++){
for(int j=0;j<m;j++)
cout<<a[i][j]<<" ";
cout<<endl;
}*/
}
}
int main(){//freopen("ddd.in","r",stdin);
memset(b,,sizeof(b));
cin>>n>>m>>mo;
for(int i=;i<=m;i++){
scanf("%c",&s[i]); while(s[i]<''||s[i]>'') scanf("%c",&s[i]);
s[i]-='';
}
kmp(); get_b();
fast_mi();
for(int i=;i<m;i++) ans=(ans+a[][i])%mo;
cout<<ans<<endl;
return ;
}

【BZOJ1009】【HNOI2008】GT考试的更多相关文章

  1. [BZOJ1009] [HNOI2008] GT考试(KMP+dp+矩阵快速幂)

    [BZOJ1009] [HNOI2008] GT考试(KMP+dp+矩阵快速幂) 题面 阿申准备报名参加GT考试,准考证号为N位数X1X2-.Xn,他不希望准考证号上出现不吉利的数字.他的不吉利数学A ...

  2. BZOJ1009 [HNOI2008]GT考试 矩阵

    去博客园看该题解 题目 [bzoj1009][HNOI2008]GT考试 Description 阿申准备报名参加GT考试,准考证号为N位数X1X2….Xn(0<=Xi<=9),他不希望准 ...

  3. bzoj1009 [HNOI2008] GT考试 矩阵乘法+dp+kmp

    1009: [HNOI2008]GT考试 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 4542  Solved: 2815[Submit][Statu ...

  4. [Bzoj1009][HNOI2008]GT考试(KMP)(矩乘优化DP)

    1009: [HNOI2008]GT考试 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 4309  Solved: 2640[Submit][Statu ...

  5. bzoj1009: [HNOI2008]GT考试(kmp+矩阵乘法)

    1009: [HNOI2008]GT考试 题目:传送门 题解: 看这第一眼是不是瞬间想起组合数学??? 没错...这样想你就GG了! 其实这是一道稍有隐藏的矩阵乘法,好题! 首先我们可以简化一下题意: ...

  6. [bzoj1009](HNOI2008)GT考试 (kmp+矩阵快速幂加速递推)

    Description 阿 申准备报名参加GT考试,准考证号为N位数X1X2....Xn(0<=Xi<=9),他不希望准考证号上出现不吉利的数字.他的不吉利数学 A1A2...Am(0&l ...

  7. [bzoj1009][HNOI2008]GT考试

    Description 阿申准备报名参加考试,准考证号为位数,他不希望准考证号上出现不吉利的数字. 他的不吉利数学有位,不出现是指中没有恰好一段等于. 可以为. Input 第一行输入.接下来一行输入 ...

  8. [BZOJ1009] [HNOI2008] GT考试 (KMP & dp & 矩阵乘法)

    Description 阿申准备报名参加GT考试,准考证号为N位数X1X2....Xn(0<=Xi<=9),他不希望准考证号上出现不吉利的数字. 他的不吉利数学A1A2...Am(0< ...

  9. bzoj1009: [HNOI2008]GT考试 ac自动机+矩阵快速幂

    https://www.lydsy.com/JudgeOnline/problem.php?id=1009 阿申准备报名参加GT考试,准考证号为N位数X1X2....Xn(0<=Xi<=9 ...

  10. BZOJ1009:[HNOI2008]GT考试(AC自动机,矩乘DP)

    Description 阿申准备报名参加GT考试,准考证号为N位数X1X2....Xn(0<=Xi<=9),他不希望准考证号上出现不吉利的数字. 他的不吉利数学A1A2...Am(0< ...

随机推荐

  1. matlab 画框(二) 去白边

    在matlab图像处理中,为了标识出图像的目标区域来,需要利用plot函数或者rectangle函数,这样标识目标后,就保存图像. 一般saves保存的图像存在白边,可以采用imwrite对图像进行保 ...

  2. [转]Android系统Surface机制的SurfaceFlinger服务简要介绍和学习计划

    转自:Android系统Surface机制的SurfaceFlinger服务简要介绍和学习计划 前面我们从Android应用程序与SurfaceFlinger服务的关系出发,从侧面简单学习了Surfa ...

  3. python抓取性感尤物美女图

    由于是只用标准库,装了python3运行本代码就能下载到多多的美女图... 写出代码前面部分的时候,我意识到自己的函数设计错了,强忍继续把代码写完. 测试发现速度一般,200K左右的下载速度,也没有很 ...

  4. exec方法

    如果 exec 方法没有找到匹配,将返回 null.如果找到匹配项,则 exec 方法返回一个数组,并将更新全局 RegExp 对象的属性以反映匹配结果.数组元素 0 包含了完整的匹配项,而元素 1 ...

  5. SQL SERVER中的逻辑读取,物理读取,以及预读的理解

    在SQLSERVER查询分析器中,当我们用Set Statistics on 语句来统计SQL语句或者存储过程I/O的时候, SQLSERVER会显示几个概念去词语:逻辑读取,物理读取,预读. 如下: ...

  6. WPF 基础到企业应用系列索引

    转自:http://www.cnblogs.com/zenghongliang/archive/2010/07/09/1774141.html WPF 基础到企业应用系列索引 WPF 基础到企业应用系 ...

  7. 使用struts2的<s>标签出错

    15:org.apache.struts2.views.jsp.ActionTag 16:JSP 17:18:19:executeResult Server: Resin/3.1.4a Content ...

  8. MAC PHP MARK

    这是一篇以 iOS 开发人员的视角写给广大iOS 程序猿的 PHP 入门指南.在这篇文章里我努力去发掘 objectiv-c 与 php 之间的共性,来帮助有一定 iOS 开发经验的攻城狮来快速上手一 ...

  9. iOS 开发之推力动画效果

    步骤: 1.使用single view application 创建新的项目 2.在.h文件中需要遵守两个协议<UICollisionBehaviorDelegate,UIGestureReco ...

  10. swift系统学习第一章

    第一节:变量,常量,类型推断,字符,字符串 //swift学习第一节 /* 变量 常量 类型推断 字符 字符串 */ import UIKit //变量 var str = "swift&q ...