HDU 1507 Uncle Tom's Inherited Land*(二分图匹配)
Uncle Tom's Inherited Land*
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 3339 Accepted Submission(s): 1394
Special Judge
old uncle Tom inherited a piece of land from his great-great-uncle.
Originally, the property had been in the shape of a rectangle. A long
time ago, however, his great-great-uncle decided to divide the land into
a grid of small squares. He turned some of the squares into ponds, for
he loved to hunt ducks and wanted to attract them to his property. (You
cannot be sure, for you have not been to the place, but he may have made
so many ponds that the land may now consist of several disconnected
islands.)
Your uncle Tom wants to sell the inherited land, but
local rules now regulate property sales. Your uncle has been informed
that, at his great-great-uncle's request, a law has been passed which
establishes that property can only be sold in rectangular lots the size
of two squares of your uncle's property. Furthermore, ponds are not
salable property.
Your uncle asked your help to determine the
largest number of properties he could sell (the remaining squares will
become recreational parks). 
will include several test cases. The first line of a test case contains
two integers N and M, representing, respectively, the number of rows
and columns of the land (1 <= N, M <= 100). The second line will
contain an integer K indicating the number of squares that have been
turned into ponds ( (N x M) - K <= 50). Each of the next K lines
contains two integers X and Y describing the position of a square which
was turned into a pond (1 <= X <= N and 1 <= Y <= M). The
end of input is indicated by N = M = 0.
each test case in the input your program should first output one line,
containing an integer p representing the maximum number of properties
which can be sold. The next p lines specify each pair of squares which
can be sold simultaneity. If there are more than one solution, anyone is
acceptable. there is a blank line after each test case. See sample
below for clarification of the output format.
6
1 1
1 4
2 2
4 1
4 2
4 4
4 3
4
4 2
3 2
2 2
3 1
0 0
(1,2)--(1,3)
(2,1)--(3,1)
(2,3)--(3,3)
(2,4)--(3,4)
3
(1,1)--(2,1)
(1,2)--(1,3)
(2,3)--(3,3)
#include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm>
#include <cmath>
#include <string>
#include <map>
#include <queue>
#include <vector>
#define inf 0x7fffffff
#define met(a,b) memset(a,b,sizeof a)
typedef long long ll;
using namespace std;
const int N = ;
const int M = ;
int read() {int x=,f=;char c=getchar();while(c<''||c>'') {if(c=='-')f=-;c=getchar();}while(c>=''&&c<='') {x=x*+c-'';c=getchar();}return x*f;}
int n,m,cnt;
int dis[][]={{,},{,-},{,},{-,}}; int tot,head[N];
int w[][],t[N],x[N],y[N];
struct man
{
int x,y,color,num;
};
struct EDG
{
int to,next;
}edg[M];
struct ANS
{
int x,y;
}answ[N];
void add(int u,int v)
{
edg[cnt].to=v;edg[cnt].next=head[u];head[u]=cnt++;
}
void bfs(int u,int v)
{
queue<man>q;
man s;s.color=;s.num=++tot;s.x=u;s.y=v;q.push(s);
w[u][v]=;answ[tot].x=u;answ[tot].y=v;
while(!q.empty()){
man t=q.front();q.pop();
for(int i=;i<;i++){
int xx=t.x+dis[i][];int yy=t.y+dis[i][];
if(xx>=&&xx<=n&&yy>=&&yy<=m&&!w[xx][yy]){
man k;k.color=(t.color+)%;k.num=++tot;k.x=xx;k.y=yy;
q.push(k);w[xx][yy]=;answ[k.num].x=xx;answ[k.num].y=yy;
if(!t.color)add(t.num,k.num);
else add(k.num,t.num);
}
}
}
}
bool dfs(int u) {
for(int i=head[u];i!=-;i=edg[i].next) {
int v=edg[i].to;
if(!t[v]) {
t[v]=;
if(!y[v]||dfs(y[v])) {
x[u]=v;
y[v]=u;
return true;
}
}
}
return false;
}
void MaxMatch() {
int ans=;
for(int i=; i<=tot; i++) {
if(!x[i]) {
met(t,);
if(dfs(i))ans++;
}
}
printf("%d\n",ans);
for(int i=;i<=tot;i++){
if(x[i]){
int v=x[i];
printf("(%d,%d)--(%d,%d)\n",answ[i].x,answ[i].y,answ[v].x,answ[v].y);
}
}
printf("\n");
}
int main() {
while (~scanf("%d%d",&n,&m)&&n&&m) {
met(w,);met(head,-);met(x,);met(y,);met(edg,);met(answ,);cnt=;tot=;
int k=read();
while(k--){
int x=read();int y=read();
w[x][y]=;
}
for(int i=;i<=n;i++)for(int j=;j<=m;j++)if(!w[i][j])bfs(i,j);
MaxMatch();
}
return ;
}
HDU 1507 Uncle Tom's Inherited Land*(二分图匹配)的更多相关文章
- Hdu 1507 Uncle Tom's Inherited Land* 分类: Brush Mode 2014-07-30 09:28 112人阅读 评论(0) 收藏
Uncle Tom's Inherited Land* Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (J ...
- HDU 1507 Uncle Tom's Inherited Land*(二分匹配,输出任意一组解)
Uncle Tom's Inherited Land* Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (J ...
- HDU1507 Uncle Tom's Inherited Land* 二分图匹配 匈牙利算法 黑白染色
原文链接http://www.cnblogs.com/zhouzhendong/p/8254062.html 题目传送门 - HDU1507 题意概括 有一个n*m的棋盘,有些点是废的. 现在让你用1 ...
- HDU 1507 Uncle Tom's Inherited Land(最大匹配+分奇偶部分)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1507 题目大意:给你一张n*m大小的图,可以将白色正方形凑成1*2的长方形,问你最多可以凑出几块,并输 ...
- HDU 1507 Uncle Tom's Inherited Land*
题目大意:给你一个矩形,然后输入矩形里面池塘的坐标(不能放东西的地方),问可以放的地方中,最多可以放多少块1*2的长方形方块,并输出那些方块的位置. 题解:我们将所有未被覆盖的分为两种,即分为黑白格( ...
- hdu-----(1507)Uncle Tom's Inherited Land*(二分匹配)
Uncle Tom's Inherited Land* Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (J ...
- HDU——T 1507 Uncle Tom's Inherited Land*
http://acm.hdu.edu.cn/showproblem.php?pid=1507 Time Limit: 2000/1000 MS (Java/Others) Memory Limi ...
- hdu1507 Uncle Tom's Inherited Land* 二分匹配
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1507 将i+j为奇数的构成x集合中 将i+j为偶数的构成y集合中 然后就是构建二部图 关键就是构图 然 ...
- XTU 二分图和网络流 练习题 B. Uncle Tom's Inherited Land*
B. Uncle Tom's Inherited Land* Time Limit: 1000ms Memory Limit: 32768KB 64-bit integer IO format: %I ...
随机推荐
- Sketchup+ArcGIS三维建模与管理
一.软件安装及其说明 1.需要安装的软件及其安装: 这份报告主要涉及到的有三个需要安装的软件ArcGIS9.3(或9.2) .Sketchup6.0和SketchUp6 ESRI 插件. ArcGIS ...
- angularJs 自定义服务 provide 与 factory 的区别
<!DOCTYPE html> <html lang="en" ng-app="myApp"> <head> <met ...
- LNA和PA
低噪声放大器(Low Noise Amplifier) -------------LNA 功率放大器(Power Amplifier)---------------------PA LNA是低噪声放大 ...
- (转)JS加载顺序
原文:http://blog.csdn.net/dannywj1371/article/details/7048076 JS加载顺序 做一名合格的前端开发工程师(12篇)——第一篇 Javascrip ...
- hdu 2041
ps:这道题之前一直没思路,有大神提醒我用递推,但当时没搞清...今天做了那个小蜜蜂..才懂得用递推做这道题.. 代码: #include "stdio.h"long long d ...
- hdoj-2025a
#include "stdio.h"#include "string.h"void compare(int n,char s[],char &k);vo ...
- 2016 - 1 - 21 RunloopMode中的Source 与Observer
一:CFRunLoopSourceRef 1.CFRunLoopSourceRef是事件源(输入源) 2.按照官网文档分为,Source可以分为以下几类: 2.1 Porl - Based Sourc ...
- leetcode 233 Number of Digit One
这题属于需要找规律的题.先想一下最简单的情形:N = 10^n - 1 记X[i]表示从1到10^i - 1中 1 的个数,则有如下递推公式:X[i] = 10 * X[i - 1] + 10^(i ...
- Chapter 3: Connector(连接器)
一.概述 Tomcat或者称之为Catalina(开发名称),可以简化为两个主要的模块,如下图: 多个Connector关联一个Container.之所以需要多个Connector,是为了处理多种协议 ...
- 13年省赛-B题-连通分量
题意:求从1到N是否存在一条路,可以遍历每个节点. 思路:求任意两点之间是否通畅即可: 疑惑:完全暴力,bfs但是TLE,问题在于求连通分量(PS:不会)贴别人代码,先保存着. #include &l ...