KMeans算法

基本思想是初始随机给定K个簇中心,按照最邻近原则把待分类样本点分到各个簇。然后按平均法重新计算各个簇的质心,从而确定新的簇心。一直迭代,直到簇心的移动距离小于某个给定的值。

k-means 算法接受输入量 k ;然后将n个数据对象划分为 k个聚类以便使得所获得的聚类满足:同一聚类中的对象相似度较高;而不同聚类中的对象相似度较小。聚类相似度是利用各聚类中对象的均值所获得一个“中心对象”(引力中心)来进行计算的。 

k-means 算法基本步骤

(1) 从 n个数据对象任意选择 k 个对象作为初始聚类中心;
(2) 根据每个聚类对象的均值(中心对象),计算每个对象与这些中心对象的距离;并根据最小距离重新对相应对象进行划分;
(3) 重新计算每个(有变化)聚类的均值(中心对象);
(4) 计算标准测度函数,当满足一定条件,如函数收敛时,则算法终止;如果条件不满足则回到步骤(2)。
 

算法分析和评价

k-means 算法接受输入量 k ;然后将n个数据对象划分为 k个聚类以便使得所获得的聚类满足:同一聚类中的对象相似度较高;而不同聚类中的对象相似度较小。聚类相似度是利用各聚类中对象的均值所获得一个“中心对象”(引力中心)来进行计算的。
k-means 算法的工作过程说明如下:首先从n个数据对象任意选择 k 个对象作为初始聚类中心;而对于所剩下其它对象,则根据它们与这些聚类中心的相似度(距离),分别将它们分配给与其最相似的(聚类中心所代表的)聚类;然后再计算每个所获新聚类的聚类中心(该聚类中所有对象的均值);不断重复这一过程直到标准测度函数开始收敛为止。一般都采用均方差作为标准测度函数. k个聚类具有以下特点:各聚类本身尽可能的紧凑,而各聚类之间尽可能的分开。
算法的时间复杂度上界为O(n*k*t), 其中t是迭代次数。
k-means算法是一种基于样本间相似性度量的间接聚类方法,属于非监督学习方法。此算法以k为参数,把n 个对象分为k个簇,以使簇内具有较高的相似度,而且簇间的相似度较低。相似度的计算根据一个簇中对象的平均值(被看作簇的重心)来进行。此算法首先随机选择k个对象,每个对象代表一个聚类的质心。对于其余的每一个对象,根据该对象与各聚类质心之间的距离,把它分配到与之最相似的聚类中。然后,计算每个聚类的新质心。重复上述过程,直到准则函数收敛。k-means算法是一种较典型的逐点修改迭代的动态聚类算法,其要点是以误差平方和为准则函数。逐点修改类中心:一个象元样本按某一原则,归属于某一组类后,就要重新计算这个组类的均值,并且以新的均值作为凝聚中心点进行下一次象元素聚类;逐批修改类中心:在全部象元样本按某一组的类中心分类之后,再计算修改各类的均值,作为下一次分类的凝聚中心点。
 
 # coding:utf-8
import numpy as np
import matplotlib.pyplot as plt def dis(x, y): #计算距离
return np.sum(np.power(y - x, 2)) def dataN(length,k):#生成数据
z=range(k)
c=[5]*length
a1= [np.sin(i*2*np.pi/k) for i in range(k)]
a2= [np.cos(i*2*np.pi/k) for i in range(k)]
x=[[[i*j + np.random.uniform(0,5)]for i in c]for j in a1]
y=[[[i*j + np.random.uniform(0,5)]for i in c]for j in a2]
return x,y,z def showP(x,y,z):#原始点作图
plt.figure(1)
color=['or', 'ob', 'og', 'ok', '^r', '+r', 'sr', 'dr', '<r', 'pr']
for j in z:
for i in xrange(length):
plt.plot(x[j][i], y[j][i],color[j]) def initCentroids(dataSet, k):#初始化中心点
n, d = dataSet.shape
centroids = np.zeros((k, d))
for i in range(k):
index = int(np.random.uniform(0, n))
centroids[i] = dataSet[index]
return centroids def kmeans(dataSet, k): #kmeans算法
n = dataSet.shape[0]
clusterAssment = np.mat(np.zeros((n, 2)))
clusterChanged = True
centroids = initCentroids(dataSet, k)
while clusterChanged:
clusterChanged = False
for i in xrange(n):
distance=[[dis(centroids[j], dataSet[i])] for j in range(k)]
minDist= min(distance)
minIndex=distance.index(minDist)
if clusterAssment[i, 0] != minIndex:
clusterChanged = True
clusterAssment[i] = minIndex, minDist[0]
for j in range(k):
pointsInCluster = dataSet[np.nonzero(clusterAssment[:, 0]== j)[0]]
centroids[j] = np.mean(pointsInCluster, axis = 0)
return centroids, clusterAssment def showCluster(dataSet, k, centroids, clusterAssment):#结果作图
plt.figure(2)
n=len(dataSet)
mark = ['or', 'ob', 'og', 'ok', '^r', '+r', 'sr', 'dr', '<r', 'pr']
for i in xrange(n):
markIndex = int(clusterAssment[i, 0])
plt.plot(dataSet[i, 0], dataSet[i, 1], mark[markIndex])
mark = ['Dr', 'Db', 'Dg', 'Dk', '^b', '+b', 'sb', 'db', '<b', 'pb']
for i in range(k):
plt.plot(centroids[i, 0], centroids[i, 1], mark[i], markersize =8)
plt.show() length=200
k=8 #k<=8
x,y,z=dataN(length,k)
showP(x,y,z) dataSet=np.mat(zip(np.reshape(x,(1,length*k))[0],np.reshape(y,(1,length*k))[0]))
centroids, clusterAssment = kmeans(dataSet, k)
showCluster(dataSet, k, centroids, clusterAssment)

kmeans算法的更多相关文章

  1. kmeans算法并行化的mpi程序

    用c语言写了kmeans算法的串行程序,再用mpi来写并行版的,貌似参照着串行版来写并行版,效果不是很赏心悦目~ 并行化思路: 使用主从模式.由一个节点充当主节点负责数据的划分与分配,其他节点完成本地 ...

  2. 【原创】数据挖掘案例——ReliefF和K-means算法的医学应用

    数据挖掘方法的提出,让人们有能力最终认识数据的真正价值,即蕴藏在数据中的信息和知识.数据挖掘 (DataMiriing),指的是从大型数据库或数据仓库中提取人们感兴趣的知识,这些知识是隐含的.事先未知 ...

  3. kmeans算法c语言实现,能对不同维度的数据进行聚类

    最近在苦于思考kmeans算法的MPI并行化,花了两天的时间把该算法看懂和实现了串行版. 聚类问题就是给定一个元素集合V,其中每个元素具有d个可观察属性,使用某种算法将V划分成k个子集,要求每个子集内 ...

  4. kmeans算法实践

    这几天学习了无监督学习聚类算法Kmeans,这是聚类中非常简单的一个算法,它的算法思想与监督学习算法KNN(K近邻算法)的理论基础一样都是利用了节点之间的距离度量,不同之处在于KNN是利用了有标签的数 ...

  5. 二分K-means算法

    二分K-means聚类(bisecting K-means) 算法优缺点: 由于这个是K-means的改进算法,所以优缺点与之相同. 算法思想: 1.要了解这个首先应该了解K-means算法,可以看这 ...

  6. 视觉机器学习------K-means算法

    K-means(K均值)是基于数据划分的无监督聚类算法. 一.基本原理       聚类算法可以理解为无监督的分类方法,即样本集预先不知所属类别或标签,需要根据样本之间的距离或相似程度自动进行分类.聚 ...

  7. EM算法(1):K-means 算法

    目录 EM算法(1):K-means 算法 EM算法(2):GMM训练算法 EM算法(3):EM算法运用 EM算法(4):EM算法证明 EM算法(1) : K-means算法 1. 简介 K-mean ...

  8. K-means算法及文本聚类实践

    K-Means是常用的聚类算法,与其他聚类算法相比,其时间复杂度低,聚类的效果也还不错,这里简单介绍一下k-means算法,下图是一个手写体数据集聚类的结果. 基本思想 k-means算法需要事先指定 ...

  9. K-means算法和矢量量化

    语音信号的数字处理课程作业——矢量量化.这里采用了K-means算法,即假设量化种类是已知的,当然也可以采用LBG算法等,不过K-means比较简单.矢量是二维的,可以在平面上清楚的表示出来. 1. ...

  10. [聚类算法] K-means 算法

    聚类 和 k-means简单概括. 聚类是一种 无监督学习 问题,它的目标就是基于 相似度 将相似的子集聚合在一起. k-means算法是聚类分析中使用最广泛的算法之一.它把n个对象根据它们的属性分为 ...

随机推荐

  1. 配置navigation bar外观

    /* 配置navigation bar外观开始 */ self.navigationBar.translucent = YES; self.navigationBar.titleTextAttribu ...

  2. resolve some fragment exception

    1.android fragment not attached to activity http://blog.csdn.net/walker02/article/details/7995407 if ...

  3. 关于offer选择

    6月1日收到移动调剂到昭通移动的电话,当时第一反应就是拒绝,后来参考了很久,犹豫了很久,答应了hr:答应了就有点后悔了:各种挑刺为难Hr;6月2日上午回绝hr: 问:陈姐,我有件重要的事忘记问了,在昭 ...

  4. iOS 获取IP地址

    一.获取本机IP地址 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 #import <ifadd ...

  5. Linux Mint下编译Bochs

    我在Linux Mint命令行下输入sudo apt-get install bochs安装之后发现这个没有安装gui界面,使用也存在一些问题,所以直接删掉从官网下载代码自己编译安装. 给Linux ...

  6. BZOJ 1600 建造栅栏

    O(N)分成1,2与3,4两部分搞一搞. #include<iostream> #include<cstdio> #include<cstring> #includ ...

  7. 【LeetCode OJ】Word Break II

    Problem link: http://oj.leetcode.com/problems/word-break-ii/ This problem is some extension of the w ...

  8. PHP date和time

    一.time()函数 time():得到一个数字,这个数字表示从1970-01-01到现在共走了多少秒. 前一天的时间就是 time()-60*60*24. 前一年的时间就是 time()-60*60 ...

  9. 如何运用inno在安装和卸载时提示用户结束进程?

    我尝试着写了一段,但是卸载段存在问题,请指点! CODE [Files]Source: ISTask.dll; DestDir: {app}; Flags: ignoreversion [Code]f ...

  10. 【转】3 Essential Sublime Text Plugins for Node & JavaScript Developers

    原文转自:http://scottksmith.com/blog/2014/09/29/3-essential-sublime-text-plugins-for-node-and-javascript ...