KMeans算法

基本思想是初始随机给定K个簇中心,按照最邻近原则把待分类样本点分到各个簇。然后按平均法重新计算各个簇的质心,从而确定新的簇心。一直迭代,直到簇心的移动距离小于某个给定的值。

k-means 算法接受输入量 k ;然后将n个数据对象划分为 k个聚类以便使得所获得的聚类满足:同一聚类中的对象相似度较高;而不同聚类中的对象相似度较小。聚类相似度是利用各聚类中对象的均值所获得一个“中心对象”(引力中心)来进行计算的。 

k-means 算法基本步骤

(1) 从 n个数据对象任意选择 k 个对象作为初始聚类中心;
(2) 根据每个聚类对象的均值(中心对象),计算每个对象与这些中心对象的距离;并根据最小距离重新对相应对象进行划分;
(3) 重新计算每个(有变化)聚类的均值(中心对象);
(4) 计算标准测度函数,当满足一定条件,如函数收敛时,则算法终止;如果条件不满足则回到步骤(2)。
 

算法分析和评价

k-means 算法接受输入量 k ;然后将n个数据对象划分为 k个聚类以便使得所获得的聚类满足:同一聚类中的对象相似度较高;而不同聚类中的对象相似度较小。聚类相似度是利用各聚类中对象的均值所获得一个“中心对象”(引力中心)来进行计算的。
k-means 算法的工作过程说明如下:首先从n个数据对象任意选择 k 个对象作为初始聚类中心;而对于所剩下其它对象,则根据它们与这些聚类中心的相似度(距离),分别将它们分配给与其最相似的(聚类中心所代表的)聚类;然后再计算每个所获新聚类的聚类中心(该聚类中所有对象的均值);不断重复这一过程直到标准测度函数开始收敛为止。一般都采用均方差作为标准测度函数. k个聚类具有以下特点:各聚类本身尽可能的紧凑,而各聚类之间尽可能的分开。
算法的时间复杂度上界为O(n*k*t), 其中t是迭代次数。
k-means算法是一种基于样本间相似性度量的间接聚类方法,属于非监督学习方法。此算法以k为参数,把n 个对象分为k个簇,以使簇内具有较高的相似度,而且簇间的相似度较低。相似度的计算根据一个簇中对象的平均值(被看作簇的重心)来进行。此算法首先随机选择k个对象,每个对象代表一个聚类的质心。对于其余的每一个对象,根据该对象与各聚类质心之间的距离,把它分配到与之最相似的聚类中。然后,计算每个聚类的新质心。重复上述过程,直到准则函数收敛。k-means算法是一种较典型的逐点修改迭代的动态聚类算法,其要点是以误差平方和为准则函数。逐点修改类中心:一个象元样本按某一原则,归属于某一组类后,就要重新计算这个组类的均值,并且以新的均值作为凝聚中心点进行下一次象元素聚类;逐批修改类中心:在全部象元样本按某一组的类中心分类之后,再计算修改各类的均值,作为下一次分类的凝聚中心点。
 
 # coding:utf-8
import numpy as np
import matplotlib.pyplot as plt def dis(x, y): #计算距离
return np.sum(np.power(y - x, 2)) def dataN(length,k):#生成数据
z=range(k)
c=[5]*length
a1= [np.sin(i*2*np.pi/k) for i in range(k)]
a2= [np.cos(i*2*np.pi/k) for i in range(k)]
x=[[[i*j + np.random.uniform(0,5)]for i in c]for j in a1]
y=[[[i*j + np.random.uniform(0,5)]for i in c]for j in a2]
return x,y,z def showP(x,y,z):#原始点作图
plt.figure(1)
color=['or', 'ob', 'og', 'ok', '^r', '+r', 'sr', 'dr', '<r', 'pr']
for j in z:
for i in xrange(length):
plt.plot(x[j][i], y[j][i],color[j]) def initCentroids(dataSet, k):#初始化中心点
n, d = dataSet.shape
centroids = np.zeros((k, d))
for i in range(k):
index = int(np.random.uniform(0, n))
centroids[i] = dataSet[index]
return centroids def kmeans(dataSet, k): #kmeans算法
n = dataSet.shape[0]
clusterAssment = np.mat(np.zeros((n, 2)))
clusterChanged = True
centroids = initCentroids(dataSet, k)
while clusterChanged:
clusterChanged = False
for i in xrange(n):
distance=[[dis(centroids[j], dataSet[i])] for j in range(k)]
minDist= min(distance)
minIndex=distance.index(minDist)
if clusterAssment[i, 0] != minIndex:
clusterChanged = True
clusterAssment[i] = minIndex, minDist[0]
for j in range(k):
pointsInCluster = dataSet[np.nonzero(clusterAssment[:, 0]== j)[0]]
centroids[j] = np.mean(pointsInCluster, axis = 0)
return centroids, clusterAssment def showCluster(dataSet, k, centroids, clusterAssment):#结果作图
plt.figure(2)
n=len(dataSet)
mark = ['or', 'ob', 'og', 'ok', '^r', '+r', 'sr', 'dr', '<r', 'pr']
for i in xrange(n):
markIndex = int(clusterAssment[i, 0])
plt.plot(dataSet[i, 0], dataSet[i, 1], mark[markIndex])
mark = ['Dr', 'Db', 'Dg', 'Dk', '^b', '+b', 'sb', 'db', '<b', 'pb']
for i in range(k):
plt.plot(centroids[i, 0], centroids[i, 1], mark[i], markersize =8)
plt.show() length=200
k=8 #k<=8
x,y,z=dataN(length,k)
showP(x,y,z) dataSet=np.mat(zip(np.reshape(x,(1,length*k))[0],np.reshape(y,(1,length*k))[0]))
centroids, clusterAssment = kmeans(dataSet, k)
showCluster(dataSet, k, centroids, clusterAssment)

kmeans算法的更多相关文章

  1. kmeans算法并行化的mpi程序

    用c语言写了kmeans算法的串行程序,再用mpi来写并行版的,貌似参照着串行版来写并行版,效果不是很赏心悦目~ 并行化思路: 使用主从模式.由一个节点充当主节点负责数据的划分与分配,其他节点完成本地 ...

  2. 【原创】数据挖掘案例——ReliefF和K-means算法的医学应用

    数据挖掘方法的提出,让人们有能力最终认识数据的真正价值,即蕴藏在数据中的信息和知识.数据挖掘 (DataMiriing),指的是从大型数据库或数据仓库中提取人们感兴趣的知识,这些知识是隐含的.事先未知 ...

  3. kmeans算法c语言实现,能对不同维度的数据进行聚类

    最近在苦于思考kmeans算法的MPI并行化,花了两天的时间把该算法看懂和实现了串行版. 聚类问题就是给定一个元素集合V,其中每个元素具有d个可观察属性,使用某种算法将V划分成k个子集,要求每个子集内 ...

  4. kmeans算法实践

    这几天学习了无监督学习聚类算法Kmeans,这是聚类中非常简单的一个算法,它的算法思想与监督学习算法KNN(K近邻算法)的理论基础一样都是利用了节点之间的距离度量,不同之处在于KNN是利用了有标签的数 ...

  5. 二分K-means算法

    二分K-means聚类(bisecting K-means) 算法优缺点: 由于这个是K-means的改进算法,所以优缺点与之相同. 算法思想: 1.要了解这个首先应该了解K-means算法,可以看这 ...

  6. 视觉机器学习------K-means算法

    K-means(K均值)是基于数据划分的无监督聚类算法. 一.基本原理       聚类算法可以理解为无监督的分类方法,即样本集预先不知所属类别或标签,需要根据样本之间的距离或相似程度自动进行分类.聚 ...

  7. EM算法(1):K-means 算法

    目录 EM算法(1):K-means 算法 EM算法(2):GMM训练算法 EM算法(3):EM算法运用 EM算法(4):EM算法证明 EM算法(1) : K-means算法 1. 简介 K-mean ...

  8. K-means算法及文本聚类实践

    K-Means是常用的聚类算法,与其他聚类算法相比,其时间复杂度低,聚类的效果也还不错,这里简单介绍一下k-means算法,下图是一个手写体数据集聚类的结果. 基本思想 k-means算法需要事先指定 ...

  9. K-means算法和矢量量化

    语音信号的数字处理课程作业——矢量量化.这里采用了K-means算法,即假设量化种类是已知的,当然也可以采用LBG算法等,不过K-means比较简单.矢量是二维的,可以在平面上清楚的表示出来. 1. ...

  10. [聚类算法] K-means 算法

    聚类 和 k-means简单概括. 聚类是一种 无监督学习 问题,它的目标就是基于 相似度 将相似的子集聚合在一起. k-means算法是聚类分析中使用最广泛的算法之一.它把n个对象根据它们的属性分为 ...

随机推荐

  1. ios上架

    1.登录developer.apple.com 2.点击member center后 进下图 3.点击certificates Identifiers进下图 4.点击Certificates进下图,首 ...

  2. Ubuntu 14.10 下查看系统硬件信息(实例详解)

    linux查看系统的硬件信息,并不像windows那么直观,这里我罗列了查看系统信息的实用命令,并做了分类,实例解说. cpu lscpu命令,查看的是cpu的统计信息. blue@blue-pc:~ ...

  3. Hash索引和B树索引

    要知道磁盘结构优化访问的关键在于以block为单位(比如每次读取一个页面) 这两种索引差别也就在聚集到一个block的标准: B树聚集到一个block是因为关键字在一个范围内,关键字在block内的排 ...

  4. HDOJ-三部曲一(搜索、数学)-1005-Dungeon Master

    Dungeon Master Time Limit : 2000/1000ms (Java/Other)   Memory Limit : 131072/65536K (Java/Other) Tot ...

  5. PHP Filter

    PHP filters are used to validate and sanitize external input. Validating data is determine if the da ...

  6. PHP extract() 函数

    PHP extract() 函数从数组中把变量导入到当前的符号表中. 对于数组中的每个元素,键名用于变量名,键值用于变量值. 第二个参数 type 用于指定当某个变量已经存在,而数组中又有同名元素时, ...

  7. 解决spring-mvc @responseBody注解返回json 乱码问题

    在使用spring-mvc的mvc的时候既享受它带来的便捷,又头痛它的一些问题,比如经典的中文乱码问题.现在是用json作为客户端和服务端 的数据交换格式貌似很流行,但是在springmvc中有时候会 ...

  8. word文档快速取消图片的链接

    快捷键Ctrl+Shift+F9 首先,Ctrl+A全选文章或者用鼠标拖动的方法选中部分文中: 批量删除word文档中的超级链接然后,同时按下键盘上的Ctrl+Shift+F9. 效果就出现了! 宏方 ...

  9. suse linux修改hostname

    SUSELinux中修改hostname需要修改以下两个文件 $vi /etc/HOSTNAME $vi /etc/hosts 然后重启系统即可.

  10. Web应用开发工具及语言需要具备的功能探索

    1 前言 最近一个多月在做Web项目,用到的技术有(也不算泄漏公司机密吧): 后台:Struts 2(with JSP/FreeMarker).Spring.Hibernate.MySQL.Web S ...