Traveling salesmen of nhn. (the prestigious Korean internet company) report their current location to the company on a regular basis. They also have to report their new location to the company if they are moving to another location. The company keep each salesman's working path on a map of his working area and uses this path information for the planning of the next work of the salesman. The map of a salesman's working area is represented as a connected and undirected graph, where vertices represent the possible locations of the salesman an edges correspond to the possible movements between locations. Therefore the salesman's working path can be denoted by a sequence of vertices in the graph. Since each salesman reports his position regularly an he can stay at some place for a very long time, the same vertices of the graph can appear consecutively in his working path. Let a salesman's working path be correct if two consecutive vertices correspond either the same vertex or two adjacent vertices in the graph.

For example on the following graph representing the working area of a salesman,

<tex2html_verbatim_mark>

a reported working path [1 2 2 6 5 5 5 7 4] is a correct path. But a reported working path [1 2 2 7 5 5 5 7 4] is not a correct path since there is no edge in the graph between vertices 2 a 7. If we assume that the salesman reports his location every time when he has to report his location (but possibly incorrectly), then the correct path could be [1 2 2 4 5 5 5 7 4], [1 2 4 7 5 5 5 7 4], or [1 2 2 6 5 5 5 7 4].

The length of a working path is the number of vertices in the path. We define the distance between two pathsA = a1a2...an <tex2html_verbatim_mark>and B = b1b2...bn <tex2html_verbatim_mark>of the same length n <tex2html_verbatim_mark>as

dist(AB) = d (aibi)

<tex2html_verbatim_mark>

where

d (ab) = 

<tex2html_verbatim_mark>

Given a graph representing the working area of a salesman and a working path (possible not a correct path), A<tex2html_verbatim_mark>, of a salesman, write a program to compute a correct working path, B <tex2html_verbatim_mark>, of the same length where the distancedist(AB) <tex2html_verbatim_mark>is minimized.

Input

The program is to read the input from standard input. The input consists of T <tex2html_verbatim_mark>test cases. The number of test cases (T) <tex2html_verbatim_mark>is given in the first line of the input. The first line of each test case contains two integers n1<tex2html_verbatim_mark>, n2 <tex2html_verbatim_mark>(3n1100, 2n24, 950) <tex2html_verbatim_mark>where n1 <tex2html_verbatim_mark>is the number of vertices of the graph representing the working map of a salesman and n2 <tex2html_verbatim_mark>is the number of edges in the graph. The input graph is a connected graph. Each vertex of the graph is numbered from 1 to n1 <tex2html_verbatim_mark>. In the following n2 <tex2html_verbatim_mark>lines, each line contains a pair of vertices which represent an edge of the graph. The last line of each test case contains information on a working path of the salesman. The first integer n <tex2html_verbatim_mark>(2n200) <tex2html_verbatim_mark>in the line is the length of the path and the following n integers represent the sequence of vertices in the working path.

Output

Your program is to write to standard output. Print one line for each test case. The line should contain the minimum distance of the input path to a correct path of the same length.

Sample Input

2
7 9
1 2
2 3
2 4
2 6
3 4
4 5
5 6
7 4
7 5
9 1 2 2 7 5 5 5 7 4
7 9
1 2
2 3
2 4
2 6
3 4
4 5
5 6
7 4
7 5
9 1 2 2 6 5 5 5 7 4

Sample Output

1
0 设dp[i][j]是当前序列第i个数选择j的最小dis所以 dp[i][j] = min(dp[i][j],dp[i - 1][k] + (j != a[i])) k j 连通
 #include <iostream>
#include <cstdio>
#include <cstring>
#include <iostream> using namespace std; const int MAX_N = ;
const int edge = ;
int N,M;
int a[MAX_N];
int dp1[MAX_N],dp2[MAX_N];
bool f[MAX_N][MAX_N];
int n; void solve() {
int *now = dp2,*last = dp1;
for(int i = ; i <= n; ++i) {
fill(now + ,now + N + ,n + );
for(int j = ; j <= N; ++j) {
int v = a[i] != j;
for(int k = ; k <= N; ++k) {
if(!f[j][k]) continue;
if(last[k] != n + )
now[j] = min(now[j],last[k] + v);
} }
swap(now,last);
} int ans = n + ;
//for(int i = 1; i <= N; ++i) printf("%d",last[i]);
//printf("\n");
for(int i = ; i <= N; ++i) ans = min(ans,last[i]);
printf("%d\n",ans);
} int main()
{
// freopen("sw.in","r",stdin);
int t;
scanf("%d",&t);
while(t--) {
scanf("%d%d",&N,&M); memset(dp1,,sizeof(dp1));
memset(dp2,,sizeof(dp2));
memset(f,,sizeof(f));
for(int i = ; i <= N; ++i) f[i][i] = ; for(int i = ; i < M; ++i) {
int u,v;
scanf("%d%d",&u,&v);
f[u][v] = f[v][u] = ; }
scanf("%d",&n);
for(int i = ; i <= n; ++i) {
scanf("%d",&a[i]);
} solve(); } return ;
}
 

LA 4256的更多相关文章

  1. LA 4256 商人

    题目链接:https://vjudge.net/contest/160916#problem/B 题意:给一个无向图,和一个序列:要求,在这个序列中,两两相连的两个数相同,或者,在无向图中相邻:(n& ...

  2. LA 4256 DP Salesmen

    d(i, j)表示使前i个数满足要求,而且第i个数值为j的最小改动次数. d(i, j) = min{ d(i-1, k) | k == j | G[j][k] } #include <cstd ...

  3. leggere la nostra recensione del primo e del secondo

    La terra di mezzo in trail running sembra essere distorto leggermente massima di recente, e gli aggi ...

  4. Le lié à la légèreté semblait être et donc plus simple

    Il est toutefois vraiment à partir www.runmasterfr.com/free-40-flyknit-2015-hommes-c-1_58_59.html de ...

  5. Mac Pro 使用 ll、la、l等ls的别名命令

    在 Linux 下习惯使用 ll.la.l 等ls别名的童鞋到 mac os 可就郁闷了~~ 其实只要在用户目录下建立一个脚本“.bash_profile”, vim .bash_profile 并输 ...

  6. Linux中的动态库和静态库(.a/.la/.so/.o)

    Linux中的动态库和静态库(.a/.la/.so/.o) Linux中的动态库和静态库(.a/.la/.so/.o) C/C++程序编译的过程 .o文件(目标文件) 创建atoi.o 使用atoi. ...

  7. Mac OS使用ll、la、l等ls的别名命令

    在linux下习惯使用ll.la.l等ls别名的童鞋到mac os可就郁闷了-- 其实只要在用户目录下建立一个脚本“.bash_profile”,并输入以下内容即可: alias ll='ls -al ...

  8. .Uva&LA部分题目代码

    1.LA 5694 Adding New Machine 关键词:数据结构,线段树,扫描线(FIFO) #include <algorithm> #include <cstdio&g ...

  9. 获取在线人数 CNZZ 和 51.la

    string Cookies = string.Empty; /// <summary> /// 获取在线人数 (51.la统计器) /// </summary> /// &l ...

随机推荐

  1. 使用Android Studio开发J2SE项目方法

    0.前言 最近因为要为项目开发一个底层的Java应用,所以非常偶然的遇到了这样一个问题,过去Eclipse有Java Project而现在手头使用Android Studio并不能直接建立Java应用 ...

  2. Hive深入浅出

    1.  Hive是什么 1) Hive是什么? 这里引用 Hive wiki 上的介绍: Hive is a data warehouse infrastructure built on top of ...

  3. 动态切换采用 CSplitterWnd 静态划分的视图布局(MFC)

    标题读起来有些拗口,具体是什么情况,我们来看: 一.问题的提出 一个采用MFC开发的软件,其窗体视图采用CSplitterWnd三分,效果如下图所示: 图1 软件的默认视图布局 该MFC开发的软件功能 ...

  4. Oracle用户密码过期问题解决

    一.用户密码即将过期,导致autotrace无法打开           如果用户密码即将过期,在登录数据库时会收到如下提示:           ERROR:            ORA-2800 ...

  5. OSGi在淘宝内部的使用

    现在基本不怎么用了,OSGi主要的价值,在实际中体现得不太明显 比如类隔离,用更简单的自定义ClassLoader也可以实现:单机多版本服务,用的场景也很少:热部署也不是很实用 但是,基于OSGi框架 ...

  6. Extjs-工具条和菜单 Ext.menu和Ext.Toolbar

    转载自:http://blog.csdn.net/itlwc/article/details/7878002 1.创建一个简单工具条效果图 <script type="text/jav ...

  7. Python 抓取网页乱码问题 以及EXCEL乱码

    import codecs f1=codecs.open('items.json', 'r', encoding='utf-8').read().decode("unicode_escape ...

  8. 52.ISE中的PLL时钟输入

    在manaul mode中选择PLL PLL的输入时钟可以是全局时钟,也可以是普通IO引脚. 1.PLL的输入时钟是全局时钟的情况. pll_xx pll_xx ( .clkin ( clkin ), ...

  9. Powershell下设置环境变量

    NODE中经常会用到process.env.NODE_ENV来判断当前环境,因为使用的系统是windows,在sublime text下安装terminal插件后,默认启动的时Powershell, ...

  10. python操作sqlite数据库

    root@cacti:~/box# cat convert.py #!/usr/bin/env python import sqlite3,time,rrdtool,os def boxstatus( ...