Card Collector

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 3001    Accepted Submission(s): 1435
Special Judge

Problem Description
In your childhood, do you crazy for collecting the beautiful cards in the snacks? They said that, for example, if you collect all the 108 people in the famous novel Water Margin, you will win an amazing award.

As a smart boy, you notice that to win the award, you must buy much more snacks than it seems to be. To convince your friends not to waste money any more, you should find the expected number of snacks one should buy to collect a full suit of cards.

 
Input
The first line of each test case contains one integer N (1 <= N <= 20), indicating the number of different cards you need the collect. The second line contains N numbers p1, p2, ..., pN, (p1 + p2 + ... + pN <= 1), indicating the possibility of each card to appear in a bag of snacks.

Note there is at most one card in a bag of snacks. And it is possible that there is nothing in the bag.

 
Output
Output one number for each test case, indicating the expected number of bags to buy to collect all the N different cards.

You will get accepted if the difference between your answer and the standard answer is no more that 10^-4.

 
Sample Input
1
0.1
2
0.1 0.4
 
Sample Output
10.000
10.500
 
Source
 
Recommend
zhoujiaqi2010

求期望

方法一:状压

逆序枚举所有状态 d[i] 表示状态为i时收集完所有卡片的期望步数。

d[i] = 1 + ∑(d[i | (1 << j)] * p[j])(ps: 累加所有走一步会增加新一张卡片的期望步数) + (1 - t) * d[i](ps: t为增加一张新卡片的概率);

#include <cstdio>
#include <iostream>
#include <sstream>
#include <cmath>
#include <cstring>
#include <cstdlib>
#include <string>
#include <vector>
#include <map>
#include <set>
#include <queue>
#include <stack>
#include <algorithm>
using namespace std;
#define ll long long
#define _cle(m, a) memset(m, a, sizeof(m))
#define repu(i, a, b) for(int i = a; i < b; i++)
#define MAXN (1 << 20) double d[MAXN + ];
double p[];
int main()
{
int n;
while(~scanf("%d", &n))
{
memset(d, , sizeof(d));
repu(i, , n) scanf("%lf", &p[i]);
if(( << n) - ) d[( << n) - ] = 0.0;
double t;
for(int i = ( << n) - ; i >= ; i--)
{
d[i] += 1.0;
t = 0.0;
for(int j = ; j < n; j++)
if(!(i & ( << j))) {
d[i] += p[j] * d[i | ( << j)];
t += p[j];
}
d[i] /= t;
}
printf("%.4lf\n", d[]);
} return ;
}

方法二:容斥

设Ai表示取到第i张卡片的期望,Ai = 1 / pi;

由容斥原理得:

#include <cstdio>
#include <iostream>
#include <sstream>
#include <cmath>
#include <cstring>
#include <cstdlib>
#include <string>
#include <vector>
#include <map>
#include <set>
#include <queue>
#include <stack>
#include <algorithm>
using namespace std;
#define ll long long
#define _cle(m, a) memset(m, a, sizeof(m))
#define repu(i, a, b) for(int i = a; i < b; i++)
#define MAXN (1<<20) double p[];
double d[MAXN + ];
int main()
{
int n;
while(~scanf("%d", &n))
{
double re = 0.0;
repu(i, , n) scanf("%lf", &p[i]);
int m = ;
double t = 0.0;
repu(i, , ( << n)) {
m = , t = 0.0;
repu(j, , n) if(i & ( << j)) t += p[j], m++;
if(m & ) re += 1.0 / t;
else re -= 1.0 / t;
}
printf("%.4lf\n", re);
}
return ;
}

Card Collector(HDU 4336)的更多相关文章

  1. HDU 4336:Card Collector(容斥原理)

    http://acm.split.hdu.edu.cn/showproblem.php?pid=4336 Card Collector Special Judge Problem Descriptio ...

  2. HDU 4336 Card Collector 期望dp+状压

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4336 Card Collector Time Limit: 2000/1000 MS (Java/O ...

  3. HDU 4336 Card Collector(动态规划-概率DP)

    Card Collector Problem Description In your childhood, do you crazy for collecting the beautiful card ...

  4. HDU 4336——Card Collector——————【概率dp】

    Card Collector Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)To ...

  5. hdu 4336 Card Collector (概率dp+位运算 求期望)

    题目链接 Card Collector Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Othe ...

  6. HDOJ 4336 Card Collector

    容斥原理+状压 Card Collector Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/O ...

  7. hdu4336 Card Collector 状态压缩dp

    Card Collector Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Tota ...

  8. min-max容斥 hdu 4336 && [BZOJ4036] 按位或

    题解: 之前听说过这个东西但没有学 令$max(S)$表示S中编号最大的元素,$min(S)$表示编号中最小的元素 $$max(S)=\sum{T \in S} {(-1)}^{|T|+1} min( ...

  9. hdu 4336 概率dp + 状压

    hdu 4336 小吃包装袋里面有随机赠送一些有趣的卡片,如今你想收集齐 N 张卡片.每张卡片在食品包装袋里出现的概率是p[i] ( Σp[i] <= 1 ), 问你收集全部卡片所需购买的食品数 ...

随机推荐

  1. CUBRID学习笔记 4 端口和win7下连接数据库cubrid教程

    都是官方的文档 ,水平有限, 大家可以看原文. http://www.cubrid.org/wiki_tutorials/entry/connecting-to-a-remote-cubrid-dat ...

  2. iOS - Swift String 字符串

    前言 public struct String public class NSString : NSObject, NSCopying, NSMutableCopying, NSSecureCodin ...

  3. iOS - NSURLConnection 网络请求

    前言 @interface NSURLConnection : NSObject class NSURLConnection : NSObject DEPRECATED: The NSURLConne ...

  4. Nginx 的RTMP打流模块配置

    config配置文件: user www www; worker_processes ; error_log logs/error.log debug; #pid logs/nginx.pid; ev ...

  5. DZY Loves Chessboard

    DescriptionDZY loves chessboard, and he enjoys playing with it. He has a chessboard of n rows and m ...

  6. (转)jQuery轻量级响应式图片轮播插件ResponsiveSlides.js(仅1kb)也可以做纯文本轮播

    ResponsiveSlides.js是一个展示同一容器内图片的轻量级响应式jQuery幻灯片插件(tiny responsive slideshow jQuery plugin).它支持包括IE6在 ...

  7. CnPlugin 1.5.400

    本软件CnPlugin是PL/SQL Developer工具插件,支持PL/SQL Developer 7.0以上版本.增加了PL/SQL Developer工具本身所没有的一些小功能,功能基本一些已 ...

  8. Traffic Sign Recognition with Multi-Scale Convolutional Networks

    总结一下文中几点值得学习的地方: 1,卷积神经网络的结构图:Multi-Scale Features.   因为它提取的特征的分层的,对吧,虽然最后 一层可以提供全局信息,但是呢,前面的几层可以提供更 ...

  9. for循环与for in循环

    json是js里的一种数据格式.var obj={a:15,b:8,c:12} json数组对象 var arr=[15,8,12]; 数组alert(obj.a); ---15alert(obj[' ...

  10. nginx安装笔记

    双节点安装 1 节点一 1.1 目录 /usr/local cd /usr/local 1.2 openssl rpm -ql openssl /usr/share/doc/openssl-1.0.0 ...