题意概述:

等价地,本题可以转化为下面的问题:

考虑$n \times n$的$0-1$矩阵$A$,在第$i$行上第$[-d+i, d+i]$(模$n$意义下)列对应的元素为$1$,其余为$0$。求$A^k$。

数据范围:

$n \leq 500, k \leq 10000000, d < \frac{n}{2} $。

分析:

很容易想到矩阵快速幂$O(n^3log(k))$的解法,但是很可惜,矩阵有点大,用通用方法难免超时。尝试计算矩阵较小的幂,发现得到的矩阵的每一行

都可由上一行循环右移$1$位得到。因此只计算一行就以为计算出整个矩阵,因此复杂度降为$O(n^2log(k))$,可以通过。

 #include <algorithm>
#include <cstdio>
#include <cstring>
#include <string>
#include <queue>
#include <map>
#include <set>
#include <ctime>
#include <cmath>
#include <iostream>
#include <assert.h>
#define PI acos(-1.)
#pragma comment(linker, "/STACK:102400000,102400000")
#define max(a, b) ((a) > (b) ? (a) : (b))
#define min(a, b) ((a) < (b) ? (a) : (b))
#define mp make_pair
#define st first
#define nd second
#define keyn (root->ch[1]->ch[0])
#define lson (u << 1)
#define rson (u << 1 | 1)
#define pii pair<int, int>
#define pll pair<ll, ll>
#define pb push_back
#define type(x) __typeof(x.begin())
#define foreach(i, j) for(type(j)i = j.begin(); i != j.end(); i++)
#define FOR(i, s, t) for(int i = (s); i <= (t); i++)
#define ROF(i, t, s) for(int i = (t); i >= (s); i--)
#define dbg(x) cout << x << endl
#define dbg2(x, y) cout << x << " " << y << endl
#define clr(x, i) memset(x, (i), sizeof(x))
#define maximize(x, y) x = max((x), (y))
#define minimize(x, y) x = min((x), (y))
#define low_bit(x) ((x) & (-x))
using namespace std;
typedef long long ll;
const int int_inf = 0x3f3f3f3f;
const ll ll_inf = 0x3f3f3f3f3f3f3f3f;
const int INT_INF = (int)((1ll << ) - );
const double double_inf = 1e30;
const double eps = 1e-;
typedef unsigned long long ul;
inline int readint(){
int x;
scanf("%d", &x);
return x;
}
inline int readstr(char *s){
scanf("%s", s);
return strlen(s);
}
//Here goes 2d geometry templates
struct Point{
double x, y;
Point(double x = , double y = ) : x(x), y(y) {}
};
typedef Point Vector;
Vector operator + (Vector A, Vector B){
return Vector(A.x + B.x, A.y + B.y);
}
Vector operator - (Point A, Point B){
return Vector(A.x - B.x, A.y - B.y);
}
Vector operator * (Vector A, double p){
return Vector(A.x * p, A.y * p);
}
Vector operator / (Vector A, double p){
return Vector(A.x / p, A.y / p);
}
bool operator < (const Point& a, const Point& b){
return a.x < b.x || (a.x == b.x && a.y < b.y);
}
int dcmp(double x){
if(abs(x) < eps) return ;
return x < ? - : ;
}
bool operator == (const Point& a, const Point& b){
return dcmp(a.x - b.x) == && dcmp(a.y - b.y) == ;
}
double Dot(Vector A, Vector B){
return A.x * B.x + A.y * B.y;
}
double Len(Vector A){
return sqrt(Dot(A, A));
}
double Angle(Vector A, Vector B){
return acos(Dot(A, B) / Len(A) / Len(B));
}
double Cross(Vector A, Vector B){
return A.x * B.y - A.y * B.x;
}
double Area2(Point A, Point B, Point C){
return Cross(B - A, C - A);
}
Vector Rotate(Vector A, double rad){
//rotate counterclockwise
return Vector(A.x * cos(rad) - A.y * sin(rad), A.x * sin(rad) + A.y * cos(rad));
}
Vector Normal(Vector A){
double L = Len(A);
return Vector(-A.y / L, A.x / L);
}
void Normallize(Vector &A){
double L = Len(A);
A.x /= L, A.y /= L;
}
Point GetLineIntersection(Point P, Vector v, Point Q, Vector w){
Vector u = P - Q;
double t = Cross(w, u) / Cross(v, w);
return P + v * t;
}
double DistanceToLine(Point P, Point A, Point B){
Vector v1 = B - A, v2 = P - A;
return abs(Cross(v1, v2)) / Len(v1);
}
double DistanceToSegment(Point P, Point A, Point B){
if(A == B) return Len(P - A);
Vector v1 = B - A, v2 = P - A, v3 = P - B;
if(dcmp(Dot(v1, v2)) < ) return Len(v2);
else if(dcmp(Dot(v1, v3)) > ) return Len(v3);
else return abs(Cross(v1, v2)) / Len(v1);
}
Point GetLineProjection(Point P, Point A, Point B){
Vector v = B - A;
return A + v * (Dot(v, P - A) / Dot(v, v));
}
bool SegmentProperIntersection(Point a1, Point a2, Point b1, Point b2){
//Line1:(a1, a2) Line2:(b1,b2)
double c1 = Cross(a2 - a1, b1 - a1), c2 = Cross(a2 - a1, b2 - a1),
c3 = Cross(b2 - b1, a1 - b1), c4 = Cross(b2 - b1, a2 - b1);
return dcmp(c1) * dcmp(c2) < && dcmp(c3) * dcmp(c4) < ;
}
bool OnSegment(Point p, Point a1, Point a2){
return dcmp(Cross(a1 - p, a2 - p)) == && dcmp(Dot(a1 - p, a2 -p)) < ;
}
Vector GetBisector(Vector v, Vector w){
Normallize(v), Normallize(w);
return Vector((v.x + w.x) / , (v.y + w.y) / );
} bool OnLine(Point p, Point a1, Point a2){
Vector v1 = p - a1, v2 = a2 - a1;
double tem = Cross(v1, v2);
return dcmp(tem) == ;
}
struct Line{
Point p;
Vector v;
Point point(double t){
return Point(p.x + t * v.x, p.y + t * v.y);
}
Line(Point p, Vector v) : p(p), v(v) {}
};
struct Circle{
Point c;
double r;
Circle(Point c, double r) : c(c), r(r) {}
Circle(int x, int y, int _r){
c = Point(x, y);
r = _r;
}
Point point(double a){
return Point(c.x + cos(a) * r, c.y + sin(a) * r);
}
};
int GetLineCircleIntersection(Line L, Circle C, double &t1, double& t2, vector<Point>& sol){
double a = L.v.x, b = L.p.x - C.c.x, c = L.v.y, d = L.p.y - C.c.y;
double e = a * a + c * c, f = * (a * b + c * d), g = b * b + d * d - C.r * C.r;
double delta = f * f - * e * g;
if(dcmp(delta) < ) return ;
if(dcmp(delta) == ){
t1 = t2 = -f / ( * e); sol.pb(L.point(t1));
return ;
}
t1 = (-f - sqrt(delta)) / ( * e); sol.pb(L.point(t1));
t2 = (-f + sqrt(delta)) / ( * e); sol.pb(L.point(t2));
return ;
}
double angle(Vector v){
return atan2(v.y, v.x);
//(-pi, pi]
}
int GetCircleCircleIntersection(Circle C1, Circle C2, vector<Point>& sol){
double d = Len(C1.c - C2.c);
if(dcmp(d) == ){
if(dcmp(C1.r - C2.r) == ) return -; //two circle duplicates
return ; //two circles share identical center
}
if(dcmp(C1.r + C2.r - d) < ) return ; //too close
if(dcmp(abs(C1.r - C2.r) - d) > ) return ; //too far away
double a = angle(C2.c - C1.c); // angle of vector(C1, C2)
double da = acos((C1.r * C1.r + d * d - C2.r * C2.r) / ( * C1.r * d));
Point p1 = C1.point(a - da), p2 = C1.point(a + da);
sol.pb(p1);
if(p1 == p2) return ;
sol.pb(p2);
return ;
}
int GetPointCircleTangents(Point p, Circle C, Vector* v){
Vector u = C.c - p;
double dist = Len(u);
if(dist < C.r) return ;//p is inside the circle, no tangents
else if(dcmp(dist - C.r) == ){
// p is on the circles, one tangent only
v[] = Rotate(u, PI / );
return ;
}else{
double ang = asin(C.r / dist);
v[] = Rotate(u, -ang);
v[] = Rotate(u, +ang);
return ;
}
}
int GetCircleCircleTangents(Circle A, Circle B, Point* a, Point* b){
//a[i] store point of tangency on Circle A of tangent i
//b[i] store point of tangency on Circle B of tangent i
//six conditions is in consideration
int cnt = ;
if(A.r < B.r) { swap(A, B); swap(a, b); }
int d2 = (A.c.x - B.c.x) * (A.c.x - B.c.x) + (A.c.y - B.c.y) * (A.c.y - B.c.y);
int rdiff = A.r - B.r;
int rsum = A.r + B.r;
if(d2 < rdiff * rdiff) return ; // one circle is inside the other
double base = atan2(B.c.y - A.c.y, B.c.x - A.c.x);
if(d2 == && A.r == B.r) return -; // two circle duplicates
if(d2 == rdiff * rdiff){ // internal tangency
a[cnt] = A.point(base); b[cnt] = B.point(base); cnt++;
return ;
}
double ang = acos((A.r - B.r) / sqrt(d2));
a[cnt] = A.point(base + ang); b[cnt++] = B.point(base + ang);
a[cnt] = A.point(base - ang); b[cnt++] = B.point(base - ang);
if(d2 == rsum * rsum){
//one internal tangent
a[cnt] = A.point(base);
b[cnt++] = B.point(base + PI);
}else if(d2 > rsum * rsum){
//two internal tangents
double ang = acos((A.r + B.r) / sqrt(d2));
a[cnt] = A.point(base + ang); b[cnt++] = B.point(base + ang + PI);
a[cnt] = A.point(base - ang); b[cnt++] = B.point(base - ang + PI);
}
return cnt;
}
Point ReadPoint(){
double x, y;
scanf("%lf%lf", &x, &y);
return Point(x, y);
}
Circle ReadCircle(){
double x, y, r;
scanf("%lf%lf%lf", &x, &y, &r);
return Circle(x, y, r);
}
//Here goes 3d geometry templates
struct Point3{
double x, y, z;
Point3(double x = , double y = , double z = ) : x(x), y(y), z(z) {}
};
typedef Point3 Vector3;
Vector3 operator + (Vector3 A, Vector3 B){
return Vector3(A.x + B.x, A.y + B.y, A.z + B.z);
}
Vector3 operator - (Vector3 A, Vector3 B){
return Vector3(A.x - B.x, A.y - B.y, A.z - B.z);
}
Vector3 operator * (Vector3 A, double p){
return Vector3(A.x * p, A.y * p, A.z * p);
}
Vector3 operator / (Vector3 A, double p){
return Vector3(A.x / p, A.y / p, A.z / p);
}
double Dot3(Vector3 A, Vector3 B){
return A.x * B.x + A.y * B.y + A.z * B.z;
}
double Len3(Vector3 A){
return sqrt(Dot3(A, A));
}
double Angle3(Vector3 A, Vector3 B){
return acos(Dot3(A, B) / Len3(A) / Len3(B));
}
double DistanceToPlane(const Point3& p, const Point3 &p0, const Vector3& n){
return abs(Dot3(p - p0, n));
}
Point3 GetPlaneProjection(const Point3 &p, const Point3 &p0, const Vector3 &n){
return p - n * Dot3(p - p0, n);
}
Point3 GetLinePlaneIntersection(Point3 p1, Point3 p2, Point3 p0, Vector3 n){
Vector3 v = p2 - p1;
double t = (Dot3(n, p0 - p1) / Dot3(n, p2 - p1));
return p1 + v * t;//if t in range [0, 1], intersection on segment
}
Vector3 Cross(Vector3 A, Vector3 B){
return Vector3(A.y * B.z - A.z * B.y, A.z * B.x - A.x * B.z, A.x * B.y - A.y * B.x);
}
double Area3(Point3 A, Point3 B, Point3 C){
return Len3(Cross(B - A, C - A));
}
class cmpt{
public:
bool operator () (const int &x, const int &y) const{
return x > y;
}
}; int Rand(int x, int o){
//if o set, return [1, x], else return [0, x - 1]
if(!x) return ;
int tem = (int)((double)rand() / RAND_MAX * x) % x;
return o ? tem + : tem;
}
////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////
void data_gen(){
srand(time());
freopen("in.txt", "w", stdout);
int times = ;
printf("%d\n", times);
while(times--){
int r = Rand(, ), a = Rand(, ), c = Rand(, );
int b = Rand(r, ), d = Rand(r, );
int m = Rand(, ), n = Rand(m, );
printf("%d %d %d %d %d %d %d\n", n, m, a, b, c, d, r);
}
} struct cmpx{
bool operator () (int x, int y) { return x > y; }
};
int debug = ;
int dx[] = {-, , , };
int dy[] = {, , -, };
//-------------------------------------------------------------------------
const int maxn = 5e2 + ;
ll mt[maxn][maxn], res[maxn][maxn], tem[maxn][maxn];
ll swp[maxn][maxn];
ll P[maxn];
ll ans[maxn];
ll n, d, k, mod;
void mt_power(ll p){
clr(res, );
FOR(i, , n - ) res[i][i] = % mod;
memcpy(tem, mt, sizeof mt);
while(p){
if(p & ){ FOR(i, , ) FOR(j, , n - ){
ll _tem = ;
FOR(k, , n - ) _tem = (_tem + res[i][k] * tem[k][j] % mod) % mod;
swp[i][j] = _tem;
}
FOR(i, , n - ) FOR(j, , n - ) swp[i][j] = swp[i - ][(j - + n) % n];
memcpy(res, swp, sizeof swp);
}
p >>= ;
FOR(i, , ) FOR(j, , n - ){
ll _tem = ;
FOR(k, , n - ) _tem = (_tem + tem[i][k] * tem[k][j] % mod) % mod;
swp[i][j] = _tem;
}
FOR(i, , n - ) FOR(j, , n - ) swp[i][j] = swp[i - ][(j - + n) % n];
memcpy(tem, swp, sizeof swp);
}
} //-------------------------------------------------------------------------
int main(){
//data_gen(); return 0;
//C(); return 0;
debug = ;
///////////////////////////////////////////////////////////////////////////////////////////////////////////////
if(debug) freopen("in.txt", "r", stdin);
//freopen("out.txt", "w", stdout);
while(~scanf("%lld%lld%lld%lld", &n, &mod, &d, &k)){
FOR(i, , n - ) scanf("%lld", &P[i]), P[i] %= mod;
clr(mt, );
FOR(i, , n - ){
int l = i - d, r = i + d;
FOR(j, l, r) mt[i][(j + n) % n] = ;
}
mt_power(k);
FOR(i, , n - ){
ans[i] = ;
FOR(j, , n - ) ans[i] = (ans[i] + res[i][j] * P[j] % mod) % mod;
}
printf("%lld", ans[]);
FOR(i, , n - ) printf(" %lld", ans[i]);
printf("\n");
}
//////////////////////////////////////////////////////////////////////////////////////////////////////////////
return ;
}

code:

正确性证明:

我们不妨将满足第$0$行元素关于第$0$列对称(模意义下)且第$i + 1$行可由第$i$行循环右移一位得到的方阵称为$Z$矩阵。

我们试着证明若$A, B$均为$Z$矩阵,那么$AB$也是$Z$矩阵。

证明:

假设$A, B$均为$n \times n$矩阵,行列编号均为在模$n$意义下的值。

令$C=AB$,为了证明$C$为$Z$矩阵,只需证明$C(i, j)=C(i - 1, j - 1)$ 且$C(0, i) = C(0, -i)$。

由于$A$为$Z$矩阵,因此$A(i, j) = A(i - 1, j - 1) = A(0, j - i) = A(0, i - j) = A(j, i)$。

所以$Z$矩阵是对称阵。考虑如下等式:

$C(i,j)=\sum_{k=0}^{n-1}{A(i, k)B(k, j)}=\sum_{k=0}^{n-1}{A(0,k-i)B(0,j-k)}$

$=\sum_{k=-1}^{n-2}{A(0, k - i + 1)B(0,j - k - 1)}=\sum_{k=0}^{n-1}{A(0, k - i + 1)B(0,j - k - 1)}$

$\sum_{k=0}^{n-1}{A(i-1,k)B(k,j-1)}=C(i-1,j-1)$

此外:

$C(0,i)=\sum_{k=0}^{n-1}{A(0, k)B(k, i)}=\sum_{k=0}^{n-1}{A(0, k)B(0, i-k)}$

$=\sum_{k=0}^{n-1}{A(0, k)B(0, k-i)}=\sum_{k=0}^{n-1}{A(0, k)B(k,- i)}=C(0,-i)$

于是得知$C$也是$Z$矩阵。

LA 3704 Cellular Automaton的更多相关文章

  1. UVa 3704 Cellular Automaton(矩乘)

    题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=15129 [思路] 矩阵乘法-循环矩阵 题目中的转移矩阵是一个循环矩 ...

  2. UVaLive 3704 Cellular Automaton (循环矩阵 + 矩阵快速幂)

    题意:一个细胞自动机包含 n 个格子,每个格子取值是 0 ~ m-1,给定距离,则每次操作后每个格子的值将变成到它距离不超过 d 的所有格子在操作之前的值之和取模 m 后的值,其中 i 和 j 的距离 ...

  3. 【POJ】3150 Cellular Automaton(矩阵乘法+特殊的技巧)

    http://poj.org/problem?id=3150 这题裸的矩阵很容易看出,假设d=1,n=5那么矩阵是这样的 1 1 0 0 1 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 ...

  4. UVA 1386 - Cellular Automaton(循环矩阵)

    UVA 1386 - Cellular Automaton option=com_onlinejudge&Itemid=8&page=show_problem&category ...

  5. [POJ 3150] Cellular Automaton (矩阵高速幂 + 矩阵乘法优化)

    Cellular Automaton Time Limit: 12000MS   Memory Limit: 65536K Total Submissions: 3048   Accepted: 12 ...

  6. UVA1386 【Cellular Automaton】题解

    题面:UVA1386 Cellular Automaton 矩阵乘法+快速幂解法: 这是一个比较裸的有点复杂需要优化的矩乘快速幂,所以推荐大家先做一下下列洛谷题目练练手: (会了,差不多就是多倍经验题 ...

  7. POJ 3150 Cellular Automaton(矩阵快速幂)

    Cellular Automaton Time Limit: 12000MS Memory Limit: 65536K Total Submissions: 3504 Accepted: 1421 C ...

  8. POJ - 3150 :Cellular Automaton(特殊的矩阵,降维优化)

    A cellular automaton is a collection of cells on a grid of specified shape that evolves through a nu ...

  9. POJ 3150 Cellular Automaton(矩阵高速幂)

    题目大意:给定n(1<=n<=500)个数字和一个数字m,这n个数字组成一个环(a0,a1.....an-1).假设对ai进行一次d-step操作,那么ai的值变为与ai的距离小于d的全部 ...

随机推荐

  1. 同一个主机上的JVM实例之间通信

    hadoop yarn里用了RPC调用.NM里面文件本地化类ContainerLocalizer用RPC心跳方式跟本机的ResourceLocalizationService通信. 用shared m ...

  2. (Protype Pattern)原型模式

    定义: 原型模式:用原型实例指定创建对象的种类,并且通过拷贝这些原型来创建新的对象 适用性: 当我们系统中有一些类,在使用的时候都有同样需要大量的创建,而这样的创建是复杂的而且是浪费CPU,内存资源的 ...

  3. 数dp多少个0-n多少0-9

    #include <bits/stdc++.h> using namespace std; const int N = 15; int n; int dp[N][N][N]; int a[ ...

  4. Java基础(45):冒泡排序的Java封装(完整可运行)

    1.冒泡排序 package lsg.ap.bubble; import java.util.*; public class BubbleSort { public static void bubbl ...

  5. 数组有没有length()这个方法? String有没有length()这个方法?

    答:数组和string都没有Length()方法,只有Length属性.

  6. nginx指定配制文件

    nginx启动: 未指定配制文件: ./nginx 指定配制文件: /usr/local/nginx/sbin/nginx -c /home/deploy/nginx-wz/conf/nginx.co ...

  7. [php] How to debug PHP in the terminal

    Here I use Netbeans, xdebug to debug the PHP in the terminal of Ubuntu. 1. you have to install the x ...

  8. zw版【转发·台湾nvp系列Delphi例程】HALCON OverpaintRegion2

    zw版[转发·台湾nvp系列Delphi例程]HALCON OverpaintRegion2 unit Unit1;interfaceuses Windows, Messages, SysUtils, ...

  9. IE7/8浏览器都不能显示PNG格式图片

    方法一:重新注册pngfilt.dll文件.这个方法是PNG格式开发商官方网站上的推荐方法之一,抱着试试的想法按网站推荐的方法试了,一试成功.方法如下:使用 开始->运行,在运行输入框中输入 “ ...

  10. ubuntu使用记录

    常用指令 ls        显示文件或目录 -l           列出文件详细信息l(list) -a          列出当前目录下所有文件及目录,包括隐藏的a(all) mkdir     ...