题目描述

很久很久之前,森林里住着一群兔子。有一天,兔子们突然决定要去看樱花。兔子们所在森林里的樱花树很特殊。樱花树由n个树枝分叉点组成,编号从0到n-1,这n个分叉点由n-1个树枝连接,我们可以把它看成一个有根树结构,其中0号节点是根节点。这个树的每个节点上都会有一些樱花,其中第i个节点有c_i朵樱花。樱花树的每一个节点都有最大的载重m,对于每一个节点i,它的儿子节点的个数和i节点上樱花个数之和不能超过m,即son(i) + c_i <= m,其中son(i)表示i的儿子的个数,如果i为叶子节点,则son(i) = 0

现在兔子们觉得樱花树上节点太多,希望去掉一些节点。当一个节点被去掉之后,这个节点上的樱花和它的儿子节点都被连到删掉节点的父节点上。如果父节点也被删除,那么就会继续向上连接,直到第一个没有被删除的节点为止。
现在兔子们希望计算在不违背最大载重的情况下,最多能删除多少节点。
注意根节点不能被删除,被删除的节点不被计入载重。

输入

第一行输入两个正整数,n和m分别表示节点个数和最大载重

第二行n个整数c_i,表示第i个节点上的樱花个数

接下来n行,每行第一个数k_i表示这个节点的儿子个数,接下来k_i个整数表示这个节点儿子的编号

输出

一行一个整数,表示最多能删除多少节点。

样例输入

10 4
0 2 2 2 4 1 0 4 1 1
3 6 2 3
1 9
1 8
1 1
0
0
2 7 4
0
1 5
0

样例输出

4

提示

对于100%的数据,1 <= n <= 2000000, 1 <= m <= 100000, 0 <= c_i <= 1000

数据保证初始时,每个节点樱花数与儿子节点个数之和大于0且不超过m


题解

树形dp+贪心

每次删除选定节点后,增加的重量为(选定节点的子节点数目+选定节点的樱花数)-1,

那么我们完全可以讲每个节点的重量看作子节点数目+樱花数。

于是就有贪心策略:优先选择重量小的子节点删除,否则若选择其它子节点,那么这个节点删掉的子节点不会增多,而且这个节点的重量会比贪心方案大,影响后面的处理。

先更新子节点的重量,并从小到大排序,根据贪心策略优先选择重量小的,判断能否去掉,若能去掉则更新当前节点的重量。

时间复杂度为O(nlogn),但常数较小,可以过。

#include <stdio.h>
#include <algorithm>
#include <vector>
using namespace std;
vector<int> son[2000001];
int c[2000001] , m , ans;
bool cmp(int a , int b)
{
return c[a] < c[b];
}
void dp(int x)
{
int i;
for(i = 0 ; i < (int)son[x].size() ; i ++ )
dp(son[x][i]);
sort(son[x].begin() , son[x].end() , cmp);
c[x] += son[x].size();
for(i = 0 ; i < (int)son[x].size() ; i ++ )
{
if(c[x] + c[son[x][i]] - 1 <= m)
{
c[x] += c[son[x][i]] - 1;
ans ++ ;
}
else
break;
}
}
int main()
{
int n , i , k , x;
scanf("%d%d" , &n , &m);
for(i = 1 ; i <= n ; i ++ )
scanf("%d" , &c[i]);
for(i = 1 ; i <= n ; i ++ )
{
scanf("%d" , &k);
while(k -- )
{
scanf("%d" , &x);
son[i].push_back(x + 1);
}
}
dp(1);
printf("%d\n" , ans);
return 0;
}

【bzoj4027】[HEOI2015]兔子与樱花的更多相关文章

  1. BZOJ4027: [HEOI2015]兔子与樱花 贪心

    觉得是贪心,但是一开始不太肯定...然后就A了 一个点对它的父亲的贡献就是自己的权值加儿子的个数 #include<bits/stdc++.h> using namespace std; ...

  2. bzoj4027 [HEOI2015]兔子与樱花 树上贪心

    [HEOI2015]兔子与樱花 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 1320  Solved: 762[Submit][Status][Di ...

  3. [bzoj4027][HEOI2015]兔子与樱花_贪心_树形dp

    兔子与樱花 bzoj-4027 HEOI-2015 题目大意:每个点有c[i]朵樱花,有一个称重m, son[i]+c[i]<=m.如果删除一个节点,这个节点的樱花或移动到它的祖先中深度最大的, ...

  4. [BZOJ4027][HEOI2015] 兔子与樱花

    Description 很久很久之前,森林里住着一群兔子.有一天,兔子们突然决定要去看樱花.兔子们所在森林里的樱花树很特殊.樱花树由n个树枝分叉点组成,编号从0到n-1,这n个分叉点由n-1个树枝连接 ...

  5. [BZOJ4027][HEOI2015]兔子与樱花 树形dp

    Description 很久很久之前,森林里住着一群兔子.有一天,兔子们突然决定要去看樱花.兔子们所在森林里的樱花树很特殊.樱花树由n个树枝分叉点组成,编号从0到n-1,这n个分叉点由n-1个树枝连接 ...

  6. [bzoj4027][HEOI2015][兔子与樱花] (树形dp思想+玄学贪心)

    Description 很久很久之前,森林里住着一群兔子.有一天,兔子们突然决定要去看樱花.兔子们所在森林里的樱花树很特殊.樱花树由n个树枝分叉点组成,编号从0到n-1,这n个分叉点由n-1个树枝连接 ...

  7. BZOJ4027 HEOI2015兔子与樱花(贪心)

    首先显然地如果某个点超过了最大负载,删掉它仍然是不合法的.删除某个点当前只会对其父亲产生影响,同一个节点的儿子显然应该按代价从小到大删.考虑如果删掉某个点之后他的父亲不能再删了,我们损失了父亲这个点, ...

  8. 【BZOJ4027】[HEOI2015]兔子与樱花 贪心

    [BZOJ4027][HEOI2015]兔子与樱花 Description 很久很久之前,森林里住着一群兔子.有一天,兔子们突然决定要去看樱花.兔子们所在森林里的樱花树很特殊.樱花树由n个树枝分叉点组 ...

  9. B20J_4027_[HEOI2015]兔子与樱花_树形DP

    B20J_4027_[HEOI2015]兔子与樱花_树形DP 题意: 很久很久之前,森林里住着一群兔子.有一天,兔子们突然决定要去看樱花.兔子们所在森林里的樱花树很特殊.樱花树由n个树枝分叉点组成,编 ...

  10. 【BZOJ4027】兔子与樱花(贪心)

    [BZOJ4027]兔子与樱花(贪心) 题面 BZOJ 洛谷 题解 很直观的一个感受就是对于每个节点, 考虑它的所有儿子,如果能删就删. 那么我们把所有儿子按照给删去后给父亲\(c[i]\)的贡献从小 ...

随机推荐

  1. Markdown 语法说明

    Markdown 语法说明 (简体中文版) / (点击查看快速入门) 概述 宗旨 Markdown 的目标是实现「易读易写」. 可读性,无论如何,都是最重要的.一份使用 Markdown 格式撰写的文 ...

  2. Post请求和get请求乱码方式解决

    POST提交,提交页面显示中文乱码 //设置请求的编码格式 request.setCharacterEncoding("utf-8"); //设置响应的编码格式,与第一句的编码格式 ...

  3. 【Alpha版本】冲刺-Day4

    队伍:606notconnected 会议时间:11月12日 会议总结 张斯巍(433) 今天安排:图片查看界面设计 完成度:40% 明天计划:设置界面设计 遇到的问题:校运会比赛时间不够 感想:因为 ...

  4. CSS3系列一(概述、选择器、使用选择器插入内容)

    CSS3模块化结构 CSS历史发展 CSS(Cascading Style Sheet),层叠样式表,是用于控制网页样式并允许将样式信息与网页内容分离的一种标记性语言. CSS3属性选择器 E[att ...

  5. Rabbitmq -Publish_Subscribe模式- python编码实现

    what is Exchanges ?? Let's quickly go over what we covered in the previous tutorials: A producer is ...

  6. wpf 前台获取资源文件路径问题

    1 <ImageBrush ImageSource="YT.CM.CommonUI;component/Resource/FloadwindowImage/middle.png&quo ...

  7. c#正则表达式2

    System.Text.RegularExpressions.Regex ___rx = new System.Text.RegularExpressions.Regex(@""& ...

  8. Java数据结构——队列

    //================================================= // File Name : Queue_demo //-------------------- ...

  9. SSAO相关资料

    http://www.gamedev.net/page/resources/_/technical/graphics-programming-and-theory/a-simple-and-pract ...

  10. ecshop目录结构

    ECShop 最新程序 的结构图及各文件相应功能介绍ECShop文件结构目录┣ activity.php 活动列表┣ affiche.php 广告处理文件┣ affiliate.php 生成商品列表┣ ...