1353: 结点选择

时间限制: 1 Sec  内存限制: 128 MB
提交: 6  解决: 2
[提交][状态][讨论版]

题目描述

问题描述

有一棵 n 个节点的树,树上每个节点都有一个正整数权值。如果一个点被选择了,那么在树上和它相邻的点都不能被选择。求选出的点的权值和最大是多少?

选择3、4、5号点,权值和为 3+4+5 = 12 。
数据规模与约定

对于20%的数据, n <= 20。

对于50%的数据, n <= 1000。

对于100%的数据, n <= 100000。

权值均为不超过1000的正整数。

输入

输入格式

第一行包含一个整数 n 。

接下来的一行包含 n 个正整数,第 i 个正整数代表点 i 的权值。

接下来一共 n-1 行,每行描述树上的一条边。

输出

输出格式
输出一个整数,代表选出的点的权值和的最大值。

样例输入

5
1 2 3 4 5
1 2
1 3
2 4
2 5

样例输出

12

提示

本题n过大,用邻接表储存就行,注意判断后继节点的时候,不要在回溯到前驱节点

#include<stdio.h>
#include<string.h>
#include<iostream>
#include<algorithm>
using namespace std;
struct node{
int to,nex;
}edge[];
int head[];
int dp[][];
bool vis[];
int cnt; void addedge(int u,int v){
edge[cnt].to=v;
edge[cnt].nex=head[u];
head[u]=cnt++;
edge[cnt].to=u;
edge[cnt].nex=head[v];
head[v]=cnt++;
} void dfs(int v,int pre){
vis[v]=true;
for(int i=head[v];i!=-;i=edge[i].nex){
int tmp=edge[i].to;
if(tmp==pre)//注意
continue;
dfs(tmp,v);
dp[v][]+=max(dp[tmp][],dp[tmp][]);
dp[v][]+=dp[tmp][]; }
} int main(){
int n;
while(scanf("%d",&n)!=EOF){
memset(head,-,sizeof(head));
memset(dp,,sizeof(dp));
memset(vis,false,sizeof(vis));
for(int i=;i<=n;i++){
scanf("%d",&dp[i][]);
}
int a,b;
cnt=;
for(int i=;i<n;i++){
scanf("%d%d",&a,&b);
addedge(a,b);
}
dfs(,-);
int ans=max(dp[][],dp[][]);
printf("%d\n",ans);
}
return ;
}

hustoj1353 节点选择 树形dp的更多相关文章

  1. 【树形DP】JSOI BZOJ4472 salesman

    题目内容 vjudge链接 某售货员小T要到若干城镇去推销商品,由于该地区是交通不便的山区,任意两个城镇 之间都只有唯一的可能经过其它城镇的路线. 小T 可以准确地估计出在每个城镇停留的净收 益.这些 ...

  2. 树形dp——覆盖所有边的最少费用(Protecting Zonk)

    一.问题描述 有一个n(n<=10000)个节点的无根树.有两种装置A,B,每种都有无限多个. 1.在某个节点X使用A装置需要C1(C1<=1000)的花费,并且此时与节点X相连的边都被覆 ...

  3. hdu 6035(树形dp)

    题意:给你棵树,树上每个节点都有颜色,每条路径上有m种颜色  问你所有路径上出现的颜色的和 思路:答案求的是每种颜色对路径的贡献  我们可以反过来每种颜色不经过的路径的条数 假设根节点的颜色为x  我 ...

  4. 树形DP UVA 1292 Strategic game

    题目传送门 /* 题解:选择一个点,它相邻的点都当做被选择,问最少选择多少点将所有点都被选择 树形DP:dp[i][0/1]表示当前点选或不选,如果选,相邻的点可选可不选,取最小值 */ /***** ...

  5. poj2342 Anniversary party (树形dp)

    poj2342 Anniversary party (树形dp) Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 9128   ...

  6. 求树的最大独立集,最小点覆盖,最小支配集 贪心and树形dp

    目录 求树的最大独立集,最小点覆盖,最小支配集 三个定义 贪心解法 树形DP解法 (有任何问题欢迎留言或私聊&&欢迎交流讨论哦 求树的最大独立集,最小点覆盖,最小支配集 三个定义 最大 ...

  7. CF F - Tree with Maximum Cost (树形DP)给出你一颗带点权的树,dist(i, j)的值为节点i到j的距离乘上节点j的权值,让你任意找一个节点v,使得dist(v, i) (1 < i < n)的和最大。输出最大的值。

    题目意思: 给出你一颗带点权的树,dist(i, j)的值为节点i到j的距离乘上节点j的权值,让你任意找一个节点v,使得dist(v, i) (1 < i < n)的和最大.输出最大的值. ...

  8. 结点选择(树形DP)

    Description 有一棵 n 个节点的树,树上每个节点都有一个正整数权值.如果一个点被选择了,那么在树上和它相邻的点都不能被选择.求选出的点的权值和最大是多少? Input 接下来的一行包含 n ...

  9. 算法进阶面试题05——树形dp解决步骤、返回最大搜索二叉子树的大小、二叉树最远两节点的距离、晚会最大活跃度、手撕缓存结构LRU

    接着第四课的内容,加入部分第五课的内容,主要介绍树形dp和LRU 第一题: 给定一棵二叉树的头节点head,请返回最大搜索二叉子树的大小 二叉树的套路 统一处理逻辑:假设以每个节点为头的这棵树,他的最 ...

随机推荐

  1. 9月13日JavaScript语句循环(100以备奇偶数、100以内与7先关的数、100以内整数的和、10以内阶乘、乘法口诀、篮球弹起高度、64格子放东西)

    3.循环 循环是操作某一个功能(执行某段代码). ①循环四要素: a 循环初始值 b 循环的条件 c 循环状态 d 循环体 ②for循环 a 穷举:把所有的可能性的都一一列出来. b 迭代:每次循环都 ...

  2. 计算div里面li个数

    方式一:js var content=document.getElementById("content"); alert(document.getElementsByTagName ...

  3. Mixing ASP.NET and MVC routing

    Here is the solution I settled on. I installed the NuGet Microsoft.AspNet.FriendlyUrls package. Then ...

  4. redis+Keepalived实现Redis主从复制

    redis+Keepalived实现Redis主从复制: 环境:CentOs6.5Master: 10.10.10.203Slave:   10.10.10.204Virtural IP Addres ...

  5. Python基础之【第一篇】

    Python简介: python的创始人为吉多·范罗苏姆(Guido van Rossum).1989年的圣诞节期间,吉多·范罗苏姆为了在阿姆斯特丹打发时间,决心开发一个新的脚本解释程序,作为ABC语 ...

  6. PHP任意文件包含绕过截断新姿势

    前言 此方法是@l3m0n叔叔给我分享的,原文已经发布在90sec 我没有90sec的账号,所以自己实践一下,顺道安利给访问我博客的小伙伴. 适用情况 可以控制协议的情况下,如果%00无法截断包含,可 ...

  7. 跟着ttlsa一起学zabbix监控呗

    本章转载至:http://www.ttlsa.com/zabbix/follow-ttlsa-to-study-zabbix/ 虽然接触zabbix时间很长,但是中间相当一段时间没去配置,这次算是重新 ...

  8. Objective-C 链式语法的实现

    对于 Objective-C 的语法,喜欢的人会觉得它是如此的优雅,代码可读性强,接近自然语言,开发者在调用大多数方法时不需要去查看注释或文档,通常只凭借方法名就可以大致知道这个方法的作用,可以理解为 ...

  9. Linux系统改变ls文件和文件夹颜色方法

    本人之前就针对蓝色文件夹的颜色  我是这样修改的:    cp /etc/DIR_COLORS   ~/.dir_colors vim   ~/.dir_colors   , 将DIR 01;33   ...

  10. ajax实例详解

    页面通过ajax和后台进行数据交互是非常简洁且方便的.特别是封装成json数据格式. 此处使用的是jQuery的ajax var params = { version:new Date().getTi ...