HDU 1402 fft 模板题
题目就是求一个大数的乘法
这里数字的位数有50000的长度,按平时的乘法方式计算,每一位相乘是要n^2的复杂度的,这肯定不行
我们可以将每一位分解后作为系数,如153 = 1*x^2 + 5*x^1 + 3*x^0 (在这里x可以理解成10)
那么两个数字相乘就相当于系数相乘后得到新的系数组合
如153 * 4987 = <3,5,1> * <7,8,9,4>
这相当于卷积的计算,最快的方式就是fft,nlgn的复杂度就能求解,求解得到后再把每一位大于10往前赋值就行了
#include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>
#include <math.h> using namespace std;
const double PI = acos(-1.0); struct complex{
double r , i;
complex(double r= , double i=):r(r),i(i){}
complex operator+(const complex &a) const{
return complex(r+a.r , i+a.i);
}
complex operator-(const complex &a) const{
return complex(r-a.r , i-a.i);
}
complex operator*(const complex &a) const{
return complex(r*a.r-i*a.i , r*a.i+i*a.r);
}
}; void change(complex y[] , int len)
{
int i,j,k;
for(i= , j=len/ ; i<len- ; i++){
if(i<j) swap(y[i],y[j]);
k = len/;
while(j>=k){
j-=k;
k/=;
}
if(j<k) j+=k;
}
} void fft(complex y[] , int len , int on)
{
change(y , len);
for(int i= ; i<=len ; i<<=){
complex wn(cos(-on**PI/i) , sin(-on**PI/i));
for(int j= ; j<len ; j+=i){
complex w(,);
for(int k=j ; k<j+i/ ; k++){
complex u = y[k];
complex t = w*y[k+i/];
y[k] = u+t;
y[k+i/] = u-t;
w = w*wn;
}
}
}
if(on==-)
for(int i= ; i<len ; i++)
y[i].r /= len; } const int MAXN = ;
complex x1[MAXN] , x2[MAXN];
char str1[MAXN] , str2[MAXN];
int sum[MAXN]; int main()
{
while(~scanf("%s%s" , str1 , str2)){
int len1 = strlen(str1) , len2 = strlen(str2);
int len = ;
//fft的计算,由于是倍增的,需要保证是2^k次方,且要大于最后得到的结果的总位数
while(len<len1* || len<len2*) len<<=;
for(int i= ; i<len1 ; i++)
x1[i] = complex(str1[len1--i]-'' , );
for(int i=len1 ; i<len ; i++)
x1[i] = complex( , );
for(int i= ; i<len2 ; i++)
x2[i] = complex(str2[len2--i]-'' , );
for(int i=len2 ; i<len ; i++)
x2[i] = complex( , );
//将当前的组合数的系数值修改成复数坐标系的点值o(nlgn)
fft(x1 , len , );
fft(x2 , len , );
//点值可以o(n)的时间内进行计算
for(int i= ; i<len ; i++)
x1[i] = x1[i]*x2[i];
//将点值重新通过逆过程(又叫dft)转化为系数值
fft(x1 , len , -); memset(sum , , sizeof(sum));
for(int i= ; i<len ; i++) sum[i] = (int)(x1[i].r+0.5);
for(int i= ; i<len ; i++){
sum[i+] += sum[i]/;
sum[i] = sum[i]%;
}
int ansl = len1+len2-;
while(sum[ansl]== && ansl>) ansl--;
for(int i=ansl ; i>= ; i--) printf("%c" , sum[i]+'');
printf("\n");
}
return ;
}
HDU 1402 fft 模板题的更多相关文章
- HDU 1402 A * B Problem Plus (FFT模板题)
FFT模板题,求A*B. 用次FFT模板需要注意的是,N应为2的幂次,不然二进制平摊反转置换会出现死循环. 取出结果值时注意精度,要加上eps才能A. #include <cstdio> ...
- HDU 1402 FFT 大数乘法
$A * B$ FFT模板题,找到了一个看起来很清爽的模板 /** @Date : 2017-09-19 22:12:08 * @FileName: HDU 1402 FFT 大整数乘法.cpp * ...
- 51nod 1028 大数乘法 V2 【FFT模板题】
题目链接 模板题.. #include<bits/stdc++.h> using namespace std; typedef int LL; typedef double db; nam ...
- HDU 2138 Miller-Rabin 模板题
求素数个数. /** @Date : 2017-09-18 23:05:15 * @FileName: HDU 2138 miller-rabin 模板.cpp * @Platform: Window ...
- hdu 1402 FFT(模板)
A * B Problem Plus Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Other ...
- UOJ#34 FFT模板题
写完上一道题才意识到自己没有在博客里丢过FFT的模板-- 这道题就是裸的多项式乘法,可以FFT,可以NTT,也可以用Karasuba(好像有人这么写没有T),也可以各种其他分治乘法乱搞-- 所以我就直 ...
- HDU 4609 FFT模板
http://acm.hdu.edu.cn/showproblem.php?pid=4609 题意:给你n个数,问任意取三边能够,构成三角形的概率为多少. 思路:使用FFT对所有长度的个数进行卷积(\ ...
- UOJ 34: 多项式乘法(FFT模板题)
关于FFT 这个博客的讲解超级棒 http://blog.miskcoo.com/2015/04/polynomial-multiplication-and-fast-fourier-transfor ...
- HDU 1392 凸包模板题,求凸包周长
1.HDU 1392 Surround the Trees 2.题意:就是求凸包周长 3.总结:第一次做计算几何,没办法,还是看了大牛的博客 #include<iostream> #inc ...
随机推荐
- linux命令-sftp(模拟ftp服务)和scp(文件异地直接复制)
1)sftp sftp是模拟ftp的服务,使用22端口 针对远方服务器主机 (Server) 之行为 变换目录到 /etc/test 或其他目录 cd /etc/testcd PATH 列出目前所在目 ...
- bug检测报告---礼物挑选小工具--飞天小女警
飞天小女警----礼物挑选小工具 测试产品链接:http://123.207.159.79:8088/giving_gifts/ 发布在作者的博客里面:http://www.cnblogs.com/s ...
- 服务器保持与Mysql的连接
服务器程序经常要访问数据库,并且服务器程序是长时间保持运行的,mysql有一个特点,当连接上数据库后不做任何操作,默认8小时候会自动关闭休 眠的连接!一般情况下很难预料什么时候程序会执行数据库操作,如 ...
- c3p0数据库连接池使用
- HTML 5 的data-* 自定义属性
HTML 5 增加了一项新功能是 自定义数据属性 ,也就是 data-* 自定义属性.在HTML5中我们可以使用以 data- 为前缀来设置我们需要的自定义属性,来进行一些数据的存放.当然高级浏览器 ...
- 管理Cookie的插件——jquery.cookie.js
下载地址:http://plugins.jquery.com/cookie/ jquery.cookie中的操作: 一.创建cookie: 1.创建一个会话cookie: $.cookie('cook ...
- EntityFramework Core 学习笔记 —— 包含与排除类型
原文地址:https://docs.efproject.net/en/latest/modeling/included-types.html 在模型类中包含一种类型意味着 EF 拥有了这种类型的元数据 ...
- Flowplayer-Setup
SOURCE URL: https://flowplayer.org/docs/setup.html 1. DOCTYPE At the top of your page declare the HT ...
- Intent 匹配规则
1.在AndroidManifest.xml中可以为 每个 Activity,Service 设置多个Intent-Filter; 在系统启动和程序安装之后,android会收集AndroidMani ...
- Oracle软件开发分析
软件开发的步骤可大致分为: 1.需求分析 2.系统设计 3.编码实现 4.系统测试 5.运行维护 student class 多对一 sno name age gender cid id c ...