A.Kaw矩阵代数初步学习笔记 6. Gaussian Elimination
“矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授。
PDF格式学习笔记下载(Academia.edu)
第6章课程讲义下载(PDF)
Summary
- Gaussian elimination consists of two steps:
- Forward Elimination of Unknowns
In this step, the unknown is eliminated in each equation starting with the first equation. This way, the equations are reduced to one equation and one unknown in each equation. - Back Substitution
In this step, starting from the last equation, each of the unknowns is found.
- Forward Elimination of Unknowns
- More about determinant
- Let $[A]$ be a $n\times n$ matrix. Then if $[B]$ is a $n\times n$ matrix that results from adding or subtracting a multiple of one row (column) to another row (column), then $\det(A) = \det(B)$.
- Let $[A]$ be a $n\times n$ matrix that is upper triangular, lower triangular or diagonal, then $$\det(A) = a_{11}\times a_{22}\times\cdots\times a_{nn} = \prod_{i=1}^{n}a_{ii}$$ This implies that if we apply the forward elimination steps of Gaussian elimination method, the determinant of the matrix stays the same according to the previous result. Then since at the end of the forward elimination steps, the resulting matrix is upper triangular, the determinant will be given by the above result.
Selected Problems
1. Using Gaussian elimination to solve $$\begin{cases}4x_1+x_2-x_3=-2\\ 5x_1+x_2+2x_3=4\\ 6x_1+x_2+x_3=6\end{cases}$$
Solution:
Forward elimination: $$\begin{bmatrix}4& 1& -1& -2\\ 5& 1& 2& 4\\ 6& 1& 1& 6\end{bmatrix}\Rightarrow \begin{cases} R_2-{5\over4}R_1\\ R_3-{3\over2}R_1\end{cases}\begin{bmatrix}4& 1& -1& -2\\ 0& -{1\over4}& {13\over4}& {13\over2}\\ 0& -{1\over2}& {5\over2}& 9\end{bmatrix}$$ $$\Rightarrow R_3-2R_2\begin{bmatrix}4& 1& -1& -2\\ 0& -{1\over4}& {13\over4}& {13\over2}\\ 0& 0& -4& -4\end{bmatrix}$$ Back substitution: $$\begin{cases}-4x_3=-4\\ -{1\over4}x_2+{13\over4}x_3={13\over2}\\ 4x_1+x_2-x_3=-2\end{cases} \Rightarrow \begin{cases}x_3=1\\ -{1\over4}x_2+{13\over4}={13\over2}\\ 4x_1+x_2-1=-2\end{cases}$$ $$\Rightarrow \begin{cases}x_3=1\\ x_2 = -13\\ 4x_1-13=-1 \end{cases}\Rightarrow \begin{cases}x_1 = 3\\ x_2=-13\\ x_3=1 \end{cases}$$
2. Find the determinant of $$[A] = \begin{bmatrix}25& 5& 1\\ 64& 8& 1\\ 144& 12& 1\end{bmatrix}$$
Solution:
Forward elimination $$[A] = \begin{bmatrix}25& 5& 1\\ 64& 8& 1\\ 144& 12& 1\end{bmatrix}\Rightarrow\begin{cases}R_2 - {64\over25}R_1\\ R_3-{144\over25}R_1\end{cases} \begin{bmatrix}25& 5& 1\\ 0& -{24\over5}& -{39\over25}\\ 0& -{84\over5}& -{119\over25} \end{bmatrix}$$ $$\Rightarrow R_3-{7\over2}R_2 \begin{bmatrix}25& 5& 1\\ 0& -{24\over5}& -{39\over25}\\ 0& 0 & {7\over10} \end{bmatrix}$$ This is an upper triangular matrix and its determinant is the product of the diagonal elements $$\det(A) = 25\times(-{24\over5})\times{7\over10}=-84 $$
3. Find the determinant of $$[A] = \begin{bmatrix}10& -7& 0\\ -3& 2.099& 6\\ 5& -1& 5\end{bmatrix}$$
Solution:
Forward elimination $$[A] = \begin{bmatrix}10& -7& 0\\ -3& 2.099& 6\\ 5& -1& 5 \end{bmatrix}\Rightarrow\begin{cases}R_2 + {3\over 10}R_1\\ R_3-{1\over2}R_1\end{cases} \begin{bmatrix}10& -7& 0\\ 0& -{1\over1000}& 6\\ 0& {5\over2}& 5 \end{bmatrix}$$ $$\Rightarrow R_3+2500R_2 \begin{bmatrix}10& -7& 0\\ 0& -{1\over1000}& 6\\ 0& 0 & 15005 \end{bmatrix}$$ This is an upper triangular matrix and its determinant is the product of the diagonal elements $$\det(A) = 10 \times(-{1\over1000})\times15005=-150.05$$
4. Using Gaussian elimination to solve $$\begin{cases}3x_1-x_2 - 5x_3 = 9\\ x_2-10x_3=0\\ -2x_1+x_2=-6\end{cases}$$
Solution:
Forward elimination: $$\begin{bmatrix}3& -1& -5& 9\\ 0& 1& -10& 0\\ -2& 1& 0& -6\end{bmatrix}\Rightarrow R_3+{2\over3}R_1 \begin{bmatrix}3& -1& -5& 9\\ 0& 1& -10& 0\\ 0& {1\over3}& -{10\over3}& 0\end{bmatrix}$$ $$\Rightarrow R_3-{1\over3}R_2 \begin{bmatrix}3& -1& -5& 9\\ 0& 1& -10& 0\\ 0& 0 & 0 & 0\end{bmatrix}$$ Back substitution: $$\begin{cases}x_2-10x_3=0\\ 3x_1-x_2-5x_3=9\end{cases} \Rightarrow \begin{cases}x_2 = 10x_3\\ 3x_1-15x_3 = 9\end{cases} \Rightarrow \begin{cases}x_1 = 5x_3+3\\ x_2 = 10x_3\end{cases}$$ where $x_3$ is arbitrary.
A.Kaw矩阵代数初步学习笔记 6. Gaussian Elimination的更多相关文章
- A.Kaw矩阵代数初步学习笔记 10. Eigenvalues and Eigenvectors
“矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...
- A.Kaw矩阵代数初步学习笔记 9. Adequacy of Solutions
“矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...
- A.Kaw矩阵代数初步学习笔记 8. Gauss-Seidel Method
“矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...
- A.Kaw矩阵代数初步学习笔记 7. LU Decomposition
“矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...
- A.Kaw矩阵代数初步学习笔记 5. System of Equations
“矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...
- A.Kaw矩阵代数初步学习笔记 4. Unary Matrix Operations
“矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...
- A.Kaw矩阵代数初步学习笔记 3. Binary Matrix Operations
“矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...
- A.Kaw矩阵代数初步学习笔记 2. Vectors
“矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...
- A.Kaw矩阵代数初步学习笔记 1. Introduction
“矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...
随机推荐
- 我的Logo设计简史
近日,日本东京奥运会会微因涉嫌抄袭而被弃用的新闻引起设计界的一翻热论.在此我想到自己的LOGO设计,虽说并一定不好看甚至自己看回来都觉得略丑,但 几乎没有过抄袭的念头.有句话说,不想当设计师的程序猿不 ...
- 不得不玩玩NHibernate
1.0=>前言 放着好好的EF不用,为什么要来玩NHibernate了?那是因为现在的工作内容就是维护一个比较老的项目,第一版是公司找外包做的,跟数据库打交道这块用的NHibernate,虽然都 ...
- 学习Python的三种境界
前言 王国维在<人间词话>中将读书分为了三种境界:"古今之成大事业.大学问者,必经过三种之境界:'昨夜西风凋碧树,独上高楼,望尽天涯路'.此第一境也.'衣带渐宽终不悔,为伊消得人 ...
- Unity 5.3.1 No Android/IOS module loaded
unity我一直在用5.0以下的版本 昨天升级到了最新版本5.3.1 发现无法打android包,ios也不行 提示“No Android/IOS module loaded” 下面有个Module ...
- Scala入门之Array
/** * 大数据技术是数据的集合以及对数据集合的操作技术的统称,具体来说: * 1,数据集合:会涉及数据的搜集.存储等,搜集会有很多技术,存储现在比较经典的是使用Hadoop,也有很多情况使用Kaf ...
- memcached安装配置
简述: memcached,开源的分布式缓存数据系统.高性能的NOSQL . Linux 一.环境配置与安装 01.编译准备环境 yum install -y gcc make cmake autoc ...
- JS日历制作获取时间
1.直接获取 var myDate = new Date(); myDate.getYear(); 获取当前年份(2位) myDate.getFullYear(); 获取完整的年份(4位,1970-? ...
- php 解析json
今天做项目的时候需要用到json数组,解析时遇到了个小小的麻烦,特此将解决办法记下: json数据如下: { "code":200, "message":&qu ...
- MyEclipse10连接数据库
连接oracle数据库 DB窗口>>右键:新建
- SharedPrefernces使用实例讲解
activity_main.xml <LinearLayout xmlns:android="http://schemas.android.com/apk/res/android&qu ...