一开始还以为对于每根竖线,只要与过了任意一点的横线相交都可以呢,这样枚举两条线就要O(n^2),结果发现自己想多了。。。

  其实是每个点画根竖线和横线就好,对于相同竖线统计(一直不包含线上点)右上左下总点数的最小值,最后不同竖线求一个最大值。对于每条等于这个最小值最大化的竖线都找一个右下与左上的最大值,排序输出即可。注意这儿排序后需要去重

  思想倒是不难,主要就是麻烦。只需要分别离散化x轴,y轴的点,然后枚举每个点找到四个方向的其他总点数,这儿用树状数组可以简单解决。但是注意空间问题不能开二维,开一维排序x轴,再左右扫一遍,一边计算一边添加点即可,注意x y轴线上的点要减去。先扫一边找到最小值最大化的值与每条竖线包含哪些点,再扫一遍找到等于那个值的竖线中的最大右下左上和

代码写得很麻烦

#include<set>
#include<map>
#include<queue>
#include<stack>
#include<cmath>
#include<vector>
#include<string>
#include<cstdio>
#include<cstring>
#include<stdlib.h>
#include<iostream>
#include<algorithm>
using namespace std;
#define eps 1E-8
/*注意可能会有输出-0.000*/
#define Sgn(x) (x<-eps? -1 :x<eps? 0:1)//x为两个浮点数差的比较,注意返回整型
#define Cvs(x) (x > 0.0 ? x+eps : x-eps)//浮点数转化
#define zero(x) (((x)>0?(x):-(x))<eps)//判断是否等于0
#define mul(a,b) (a<<b)
#define dir(a,b) (a>>b)
typedef long long ll;
typedef unsigned long long ull;
const int Inf=<<;
const double Pi=acos(-1.0);
const int Max=;
int bit[Max];
struct node
{
int xx1,yy1;
int lup,rup,ldo,rdo;
} poi[Max];
int n;
bool cmp1(struct node p1,struct node p2)
{
if(p1.xx1==p2.xx1)
return p1.yy1<p2.yy1;
return p1.xx1<p2.xx1;
}
bool cmp2(struct node p1,struct node p2)
{
return p1.yy1<p2.yy1;
}
int lowbit(int x)
{
return x&(-x);
}
void Add(int y)
{
while(y<=n)
{
bit[y]++;
y+=lowbit(y);
}
return;
}
int Sum(int y)
{
if(!y)
return ;
int sum=;
while(y>)
{
sum+=bit[y];
y-=lowbit(y);
}
return sum;
}
void Dtz()//离散化
{
sort(poi,poi+n,cmp2);
int m=;
poi[n].yy1=Inf;
for(int i=; i<n; i++)
{
if(poi[i].yy1!=poi[i+].yy1)//注意不能和前一个进行比较,因为前一个已经被赋值
poi[i].yy1 = m++;
else
poi[i].yy1 = m;
} sort(poi,poi+n,cmp1);
m=;
poi[n].xx1=Inf;
for(int i=; i<n; i++)
{
if(poi[i].xx1!=poi[i+].xx1)
poi[i].xx1 = m++;
else
poi[i].xx1 = m;
}
return ;
}
int tem[Max],minx[Max],pos[Max];
void Solve()
{
int sum;
memset(bit,,sizeof(bit));
for(int i=; i<n; i++) //边添加边查询
{
if(i!=&&poi[i].xx1==poi[i-].xx1)
sum++;
else
sum=;
poi[i].ldo=Sum(poi[i].yy1-)-sum;//减一,避免y轴相同的点被计算
poi[i].lup=Sum(n)-Sum(poi[i].yy1);
Add(poi[i].yy1);
} memset(bit,,sizeof(bit));
for(int i=n-; i>=; i--)
{
if(i!=n-&&poi[i].xx1==poi[i+].xx1)
sum++;
else
sum=;
poi[i].rdo=Sum(poi[i].yy1-);
poi[i].rup=Sum(n)-Sum(poi[i].yy1)-sum;
Add(poi[i].yy1);
} int manx=,mans;//统计
int coun=,cnt=;
minx[]=Inf;
for(int i=; i<n; i++)//计算最小值最大的是多少
{
if(!i||poi[i].xx1==poi[i-].xx1)
{
if(poi[i].rup+poi[i].ldo<minx[coun])
minx[coun]=poi[i].rup+poi[i].ldo;
}
else
{
manx=max(manx,minx[coun]);
pos[coun++]=i;//每条同x轴的最后一个的后一个下标
minx[coun]=Inf;
if(poi[i].rup+poi[i].ldo<minx[coun])
minx[coun]=poi[i].rup+poi[i].ldo;
}
}
pos[coun]=n;
manx=max(manx,minx[coun]); for(int i=;i<=coun;i++)
{
if(minx[i]==manx)//此x轴可用
{
mans=;
for(int j=i==?:pos[i-];j<pos[i];j++)
mans=max(mans,poi[j].lup+poi[j].rdo);
tem[cnt++]=mans;
}
} printf("Stan: %d; Ollie:",manx);
sort(tem,tem+cnt);
int cntt=;
for(int i=;i<cnt;i++)//去重
if(tem[i]!=tem[cntt])
tem[++cntt]=tem[i];
for(int i=; i<=cntt; i++)
printf(" %d",tem[i]);
printf(";\n");
return ;
}
int main()
{
while(~scanf("%d",&n)&&n)
{
for(int i=; i<n; i++)
scanf("%d %d",&poi[i].xx1,&poi[i].yy1);
Dtz();//离散化
Solve();
}
return ;
}

POJ 2464 Brownie Points II(树状数组)的更多相关文章

  1. POJ 2464 Brownie Points II --树状数组

    题意: 有点迷.有一些点,Stan先选择某个点,经过这个点画一条竖线,Ollie选择一个经过这条直接的点画一条横线.Stan选这两条直线分成的左下和右上部分的点,Ollie选左上和右下部分的点.Sta ...

  2. hdu 1156 && poj 2464 Brownie Points II (BIT)

    2464 -- Brownie Points II Problem - 1156 hdu分类线段树的题.题意是,给出一堆点的位置,stan和ollie玩游戏,stan通过其中一个点画垂线,ollie通 ...

  3. POJ 2464 Brownie Points II (树状数组,难题)

    题意:在平面直角坐标系中给你N个点,stan和ollie玩一个游戏,首先stan在竖直方向上画一条直线,该直线必须要过其中的某个点,然后ollie在水平方向上画一条直线,该直线的要求是要经过一个sta ...

  4. POJ - 2464 Brownie Points II 【树状数组 + 离散化】【好题】

    题目链接 http://poj.org/problem?id=2464 题意 在一个二维坐标系上 给出一些点 Stan 先画一条过一点的水平线 Odd 再画一条 过Stan那条水平线上的任一点的垂直线 ...

  5. UVA 10869 - Brownie Points II(树阵)

    UVA 10869 - Brownie Points II 题目链接 题意:平面上n个点,两个人,第一个人先选一条经过点的垂直x轴的线.然后还有一个人在这条线上穿过的点选一点作垂直该直线的线,然后划分 ...

  6. POJ 2155 Matrix(二维树状数组,绝对具体)

    Matrix Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 20599   Accepted: 7673 Descripti ...

  7. poj 3321:Apple Tree(树状数组,提高题)

    Apple Tree Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 18623   Accepted: 5629 Descr ...

  8. POJ 2299 Ultra-QuickSort 逆序数 树状数组 归并排序 线段树

    题目链接:http://poj.org/problem?id=2299 求逆序数的经典题,求逆序数可用树状数组,归并排序,线段树求解,本文给出树状数组,归并排序,线段树的解法. 归并排序: #incl ...

  9. poj 3321 Apple Tree(一维树状数组)

    题目:http://poj.org/problem?id=3321 题意: 苹果树上n个分叉,Q是询问,C是改变状态.... 开始的处理比较难,参考了一下大神的思路,构图成邻接表 并 用DFS编号 白 ...

随机推荐

  1. ItemsSource绑定后ScrollViewer不复位

    ItemsSource绑定后ScrollViewer不复位 ItemsSource绑定后ScrollViewer不复位,有的时候我们需要这一效果,但大多数情况下我们是想让它复位的. 在WPF中也有这个 ...

  2. UVALive 5903 Piece it together(二分图匹配)

    给你一个n*m的矩阵,每个点为'B'或'W'或'.'.然后你有一种碎片.碎片可以旋转,问可否用这种碎片精确覆盖矩阵.N,M<=500 WB  <==碎片 W 题目一看,感觉是精确覆盖(最近 ...

  3. CSS设置超出指定宽度自动换行

    一.背景 最近项目中有用到在div中显示用户反馈的信息,是指定宽度的div,超出要自动换行,开始写好后感觉应该没什么问题,后来自己随便输入测试数据的时候发现:如果是纯字母或者是纯数字就会出现超出了也不 ...

  4. markdown思维导图笔记

  5. sqlite建表语句(特别是外键问题)

    原创  sqlite建表语句(特别是外键问题) 下面图表示两个表关系: //表1User_invitecreate table User_invite(Invite_id INTEGER PRIMAR ...

  6. hud 1019最小公倍数

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1019 思路:头两个数先求,再用所求的数与后面的一个数求,依次类推 #include<stdlib ...

  7. Xcode因为证书问题经常报的那些错

    去开始做 iOS开发的时候,因为证书问题 Xcode 经常报这样或那样的错,经过实践,现在看见 Xcode 报错已经心平气和了,经常报的错就那么多,整理一下. 1. 确认下证书是不是开发证书,如果是发 ...

  8. inode

    硬盘的最小存储单位叫"扇区(sector)",每个扇区存储512字节(相当于0.5kb).系统读取硬盘时,只会读取多个sector即一个block.block 是文件存取的最小单位 ...

  9. jquery学习笔记-----插件开发的编写总结

    一.对jQuery对象的扩展 ;(function($){ $.fn.extend(  { fun1:abc,fun2:1bc … } ) })(jQuery) 这里采用立即执行模式,即不用调用也能执 ...

  10. linux后台运行和关闭、查看后台任务

    转自:http://www.cnblogs.com/kaituorensheng/p/3980334.html fg.bg.jobs.&.nohup.ctrl+z.ctrl+c 命令 一.&a ...