1069. The Black Hole of Numbers (20)
For any 4-digit integer except the ones with all the digits being the same, if we sort the digits in non-increasing order first, and then in non-decreasing order, a new number can be obtained by taking the second number from the first one. Repeat in this manner
we will soon end up at the number 6174 -- the "black hole" of 4-digit numbers. This number is named Kaprekar Constant.
For example, start from 6767, we'll get:
7766 - 6677 = 1089
9810 - 0189 = 9621
9621 - 1269 = 8352
8532 - 2358 = 6174
7641 - 1467 = 6174
... ...
Given any 4-digit number, you are supposed to illustrate the way it gets into the black hole.
Input Specification:
Each input file contains one test case which gives a positive integer N in the range (0, 10000).
Output Specification:
If all the 4 digits of N are the same, print in one line the equation "N - N = 0000". Else print each step of calculation in a line until 6174 comes out as the difference. All the numbers must be printed as 4-digit numbers.
Sample Input 1:
6767
Sample Output 1:
7766 - 6677 = 1089
9810 - 0189 = 9621
9621 - 1269 = 8352
8532 - 2358 = 6174
Sample Input 2:
2222
Sample Output 2:
2222 - 2222 = 0000
#include <iostream>
#include"stdio.h"
#include"stdlib.h"
#include"string.h"
#include"algorithm"
using namespace std;
bool compareChar(char c1, char c2){
if(c1<c2)
return false;
return true;
}
char * stringMinus(char *s1, char *s2){
for(int i=3;i>=0;i--){
if(s1[i]>=s2[i]){
s1[i] = '0'+(s1[i]-s2[i]);
}
else{
s1[i] = '0'+(s1[i]-s2[i]+10);
if(i>0)
s1[i-1] -= 1;
}
}
return s1;
} int main()
{
int n;
char s[5]="0000";
char incr[5];
scanf("%d",&n);
int i=0;
while(n){
int x = n%10;
s[3-i] = '0'+x;
n/=10;
i++;
}
while(strcmp(s,"0000")!=0){
sort(s,s+4);
strcpy(incr,s); sort(s,s+4,compareChar); printf("%s - %s = ",s,incr);
printf("%s\n",stringMinus(s,incr));
if(strcmp(s,"6174")==0){
break;
}
}
return 0;
}
1069. The Black Hole of Numbers (20)的更多相关文章
- 1069. The Black Hole of Numbers (20)【模拟】——PAT (Advanced Level) Practise
题目信息 1069. The Black Hole of Numbers (20) 时间限制100 ms 内存限制65536 kB 代码长度限制16000 B For any 4-digit inte ...
- PAT 甲级 1069 The Black Hole of Numbers (20 分)(内含别人string处理的精简代码)
1069 The Black Hole of Numbers (20 分) For any 4-digit integer except the ones with all the digits ...
- 1069 The Black Hole of Numbers (20分)
1069 The Black Hole of Numbers (20分) 1. 题目 2. 思路 把输入的数字作为字符串,调用排序算法,求最大最小 3. 注意点 输入的数字的范围是(0, 104), ...
- PAT 1069. The Black Hole of Numbers (20)
For any 4-digit integer except the ones with all the digits being the same, if we sort the digits in ...
- PAT Advanced 1069 The Black Hole of Numbers (20) [数学问题-简单数学]
题目 For any 4-digit integer except the ones with all the digits being the same, if we sort the digits ...
- PAT (Advanced Level) 1069. The Black Hole of Numbers (20)
简单题. #include<cstdio> #include<cstring> #include<cmath> #include<vector> #in ...
- PAT甲题题解-1069. The Black Hole of Numbers (20)-模拟
博主欢迎转载,但请给出本文链接,我尊重你,你尊重我,谢谢~http://www.cnblogs.com/chenxiwenruo/p/6789244.html特别不喜欢那些随便转载别人的原创文章又不给 ...
- 【PAT甲级】1069 The Black Hole of Numbers (20 分)
题意: 输入一个四位的正整数N,输出每位数字降序排序后的四位数字减去升序排序后的四位数字等于的四位数字,如果数字全部相同或者结果为6174(黑洞循环数字)则停止. trick: 这道题一反常态的输入的 ...
- PAT 1069 The Black Hole of Numbers
1069 The Black Hole of Numbers (20 分) For any 4-digit integer except the ones with all the digits ...
随机推荐
- 使用VS把ASP.NET 5的应用发布到Linux的Docker上
(此文章同时发表在本人微信公众号"dotNET每日精华文章",欢迎右边二维码来关注.) 题记:我相信未来应用程序的部署模式首选一定会是Docker,所以.NET社区的朋友也不应该忽 ...
- 安装wine的问题
- Bag-of-words模型
Bag-of-words模型是信息检索领域常用的文档表示方法.在信息检索中,BOW模型假定对于一个文档,忽略它的单词顺序和语法.句法等要素,将其仅仅看作是若干个词汇的集合,文档中每个单词的出现都是独立 ...
- mageView图片显示出来 ()
ImageView图片显示出来: igSign 是 ImageView的实例 igSign.setImageDrawable(getResources().getDrawable(R.drawable ...
- 用Feature的方式删除SharePoint2010的Page中重复的WebPart
用Feature的方式删除SharePoint2010的Page中重复的WebPart. 代码如下所示: public class SupportCenterDuplicatedWebpartRemo ...
- loj 1036(dp)
题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=25913 思路:易证存在一条从左上角到右下角的折线,沿着格子边缘的. ...
- 深入解析结构化异常处理(SEH)
jpg 改 rar
- autoprefixer
自动化补全工具,在写兼容的css样式的时候,自动补全-webkit,-moz等 sublime和websotrm上都可以安装此工具.
- JavaScript入门(2)
encodeURI()和 decodeURI()作用 编码与解码 encodeURIComponent()和 decodeURIComponent()作用区别是 后者可以处理一些特殊字符进行转义 ...
- PHP入门 - - 07-->HTML的表单
一.<form>标签及其属性 <from></form>标签对用来创建一个表单,即定义表单的开始和结束位置,<form>标签具有下面等属性. ...