机器学习-线性分类-支持向量机SVM-SMO算法-14
1. SVM算法总结
选择 核函数 以及对应的 超参数
为什么要选择核函数?
升维 将线性问题不可分问题 升维后转化成 线性可分的问题
核函数 有那些? linea gauss polinormail tanh选择惩罚项系数C
min ||w||2 + Csum(ei)构造优化问题:

利用SMO算法 计算 α*
根据α* 计算w*
根据α* 得到支撑向量 计算每个支撑向量 对应的bs*
bs* 求平均得到b*
学得超平面:
仔细观察这个式子就会发现:
其实只需要关注 支撑向量的C>α>0 非支撑向量的alpha为0
W*的计算:

其实也就只需要关注 是支撑向量的几个点,支撑向量对于W,b的求解起关键作用,其他的非支撑向量,对模型没起任何作用
- 得到最终的判别式

神奇的SMO算法到底是如何进行的?
2. SMO算法

其中(xi,yi)表示训练样本数据,xi 为样本特征,yi∈{−1,1}为样本标签,C 为惩罚系数由自己设定。上述问题是要求解 N 个参数(α1,α2,α3,...,αN),其他参数均为已知
把原始求解 N 个参数二次规划问题分解成很多个子二次规划问题分别求解,每个子问题只需要求解 2 个参数,方法类似于坐标上升,节省时间成本和降低了内存需求。每次启发式选择两个变量进行优化,不断循环,直到达到函数最优值。
同时优化两个参数,固定其他 N-2 个参数,假设选择的变量为α1,α2,
固定其他参数α3,α4,...,αN,由于参数α3,α4,...,αN 的固定, 可以简化目标函数为只关于α1,α2的二元函数,Constant 表示常数项(不包含变量α1,α2 的项)。
v1 表示 x1 与 3---N 之后所有的样本运算
v2 表示 x2 与 3---N 之后所有的样本运算

其中:

Kij表示 xi 与 xj 输入到核函数 进行运算的结果

两边同时乘以 y1, 任意的y*2 = 1
得到:

需要优化的目标函数转化成:

上式中是关于变量α2 的函数,对上式求导并令其为 0 得:


将4, 6, 7 带入求导=0 的式子

令η=K11+K22−2K12

这里得到的α2 是未经过修建的alpha 不一定满足约束条件



翻译一下:
两个拉格朗日算子 0< α1 α2 < C限定必须在正方形盒子内部
α1y1+α2y2=固定值 限定了必须在直线上 最优解 必须是一条线段
新的α2 下限L 上限H

修建后的alpha

由于其他 N-2 个变量固定:

两边同时乘以y1:

选择α1 α2采用上述方法进行优化,直到不违反kkt条件

α1 α2优化的同时对b进行更新:
- 如果:

则 x1 y1 为支撑向量
两边乘以y1:

得到bnew:

只不过是拆成3部分而已


前两项可以替换为

得到:

如果
同理:

α1 α2 都满足:

取一个就行:
如果都不满足 他们的中点:
取1/2 *(α1 + α2)
机器学习-线性分类-支持向量机SVM-SMO算法-14的更多相关文章
- SVM-非线性支持向量机及SMO算法
SVM-非线性支持向量机及SMO算法 如果您想体验更好的阅读:请戳这里littlefish.top 线性不可分情况 线性可分问题的支持向量机学习方法,对线性不可分训练数据是不适用的,为了满足函数间隔大 ...
- 线性可分支持向量机--SVM(1)
线性可分支持向量机--SVM (1) 给定线性可分的数据集 假设输入空间(特征向量)为,输出空间为. 输入 表示实例的特征向量,对应于输入空间的点: 输出 表示示例的类别. 线性可分支持向量机的定义: ...
- 统计学习:线性可分支持向量机(SVM)
模型 超平面 我们称下面形式的集合为超平面 \[\begin{aligned} \{ \bm{x} | \bm{a}^{T} \bm{x} - b = 0 \} \end{aligned} \tag{ ...
- 机器学习算法整理(七)支持向量机以及SMO算法实现
以下均为自己看视频做的笔记,自用,侵删! 还参考了:http://www.ai-start.com/ml2014/ 在监督学习中,许多学习算法的性能都非常类似,因此,重要的不是你该选择使用学习算法A还 ...
- 机器学习笔记:支持向量机(svm)
支持向量机(svm)英文为Support Vector Machines 第一次接触支持向量机是2017年在一个在线解密游戏"哈密顿行动"中的一个关卡的二分类问题,用到了台湾教授写 ...
- 支持向量机的smo算法(MATLAB code)
建立smo.m % function [alpha,bias] = smo(X, y, C, tol) function model = smo(X, y, C, tol) % SMO: SMO al ...
- 吴裕雄--天生自然python机器学习:基于支持向量机SVM的手写数字识别
from numpy import * def img2vector(filename): returnVect = zeros((1,1024)) fr = open(filename) for i ...
- 机器学习:Python中如何使用支持向量机(SVM)算法
(简单介绍一下支持向量机,详细介绍尤其是算法过程可以查阅其他资) 在机器学习领域,支持向量机SVM(Support Vector Machine)是一个有监督的学习模型,通常用来进行模式识别.分类(异 ...
- 机器学习-支持向量机SVM
简介: 支持向量机(SVM)是一种二分类的监督学习模型,他的基本模型是定义在特征空间上的间隔最大的线性模型.他与感知机的区别是,感知机只要找到可以将数据正确划分的超平面即可,而SVM需要找到间隔最大的 ...
- 机器学习——支持向量机SVM
前言 学习本章节前需要先学习: <机器学习--最优化问题:拉格朗日乘子法.KKT条件以及对偶问题> <机器学习--感知机> 1 摘要: 支持向量机(SVM)是一种二类分类模型, ...
随机推荐
- Chrome扩展开发实战:快速填充表单
大家好,我是 dom 哥.我正在写关于 Chrome 扩展开发的系列文章,感兴趣的可以 点个小星星 . 填表单是打工人经常面对的场景,作为一个前端,我经常开发一些PC端的页面,它们主要由表单和表格构成 ...
- JDK8提供的常用计量单位
时间计量单位:Duration @DurationUnit(ChronoUnit.HOURS) private Duration serverTimeout; 空间计量单位:DataSize @Dat ...
- 87 GB 模型种子,GPT-4 缩小版,超越ChatGPT3.5,多平台在线体验
瞬间爆火的Mixtral 8x7B 大家好,我是老章 最近风头最盛的大模型当属Mistral AI 发布的Mixtral 8x7B了,火爆程度压过Google的Gemini. 缘起是MistralAI ...
- Golang实现JAVA虚拟机-运行时数据区
原文链接:https://gaoyubo.cn/blogs/8ae1f4ca.html 前置 Golang实现JAVA虚拟机-解析class文件 一.运行时数据区概述 JVM学习: JVM-运行时数据 ...
- 若依集成mybatisplus实现mybatis增强
- MongoDB的CRUD操作(入门)
MongoDB的简单介绍: 1:MongoDB是什么? mongodb是非关系数据库 但是是非关系数据库当中功能最丰富,最像关系数据库的 MongoDB是一个基于分布式文件存储的数据库. 由C++语言 ...
- 【程序员的福音】一款C#开源的GitHub加速神器
前言 作为一个程序员你是否会经常会遇到GitHub无法访问(如下无法访问图片),或者是访问和下载源码时十分缓慢就像乌龟爬行一般.之前有尝试过手动修改host文件来解决网站的访问问题,以及更换网络但还是 ...
- SSH默认端口从22修改为其他端口
1.在终端中使用root权限登录到您的Linux服务器. 2.打开终端,并使用适合您的文本编辑器(如vi.nano等)打开SSH配置文件.例如,通过运行以下命令之一: vi /etc/ssh/sshd ...
- Boost Your Strategy With The Content Marketing Tools
Boost Your Strategy With The Content Marketing Tools In today's digital landscape, content marketing ...
- 用IoT放羊养牛,不出门也能知道它们的动向
摘要:羊圈里几只小羊羔有点无精打采,"叮",牧民拉索划开手机,第一时间得知了这个情况.草场上有只牛一直到天黑都没回来,拉索再次通过手机软件,很快定位到那只独自流落在外的牛儿-- 本 ...