题目传送门

想要做这题,我们要先了解一下最大公约数

最大公因数,也称最大公约数最大公因子,指两个或多

个整数共有约数中最大的一个。a,b的最大公约数记为

(a,b),同样的,a,b,c的最大公约数记为(a,b,

c),多个整数的最大公约数也有同样的记号。求最大公

约数有多种方法,常见的有质因数分解法、短除法、辗转

相除法、更相减损法。

还有最小公倍数

两个或多个整数公有的倍数叫做它们的公倍数,其中除0

以外最小的一个公倍数就叫做这几个整数的最小公倍数

整数a,b的最小公倍数记为[a,b],同样的,a,b,c的

最小公倍数记为[a,b,c],多个整数的最小公倍数也有

同样的记号。

我才不会告诉你我是抄的百度百科呢!



下面进入正题,因为最大公约数*最小公倍数是等于原数之积的,所以有了下面的式子。

X0乘Y0=P乘Q

所以这道题我们可以用暴力做,下面是代码。

#include <bits/stdc++.h>//万能头
using namespace std;
int n,m,s;//统计PQ的个数
int main()
{
cin>>n>>m;
for(int i=n;i<=m;i++)
{
for(int j=n;j<=m;j++)
{
if(__gcd(i,j)==n&&i*j/__gcd(i,j)==m)//__gcd是求最大公约数函数
{
s++;//注意,这里不能加2,因为这里是统计PQ一共有多少组,而不是P和Q一共有多少个
}
}
}
cout<<s;//直接输出
return 0;
}

不带注释版[坏笑]

#include <bits/stdc++.F>
using namespace std;
int a,b,s;
int mian()
{
cin>>n>>m;
for(int i=n;i<=m;j++)
{
for(int j=n;;j++)
{
if(__gcd(i,j)==m&&ji*j/__gcd(i,j)==n)
{
s+;
}
}
}
cout<<s;
retrun 0;
}

但是暴力还是没有AC,错误有以下两个

  1. Noip比赛中不允许使用__gcd函数

  2. 两个for循环导致TLE

知道了错误,就赶紧改正吧,下面是AC代码

#include<iostream>
using namespace std;
int ans;
int lcm(int a,int b)//最小公倍数函数
{
if(a<b)
{
swap(a,b);
}
if(a%b==0)
{
return b;//辗转相除法
}
else
{
return lcm(b,a%b);
}
}
int gcd(int a,int b)//最大公约数函数
{
return (a*b/lcm(a,b));// 直接用前面 X0乘Y0=P乘Q的公式求出最大公约数
}
int main()
{
int a,b;
cin>>a>>b;//输入
for(int i=a;i<=b;i++)
{
int j=a*b/i; //这就是优化的地方,因为X0乘Y0=P乘Q,所以j可以不用for循环,直接用a*b/i就行了
if(lcm(i,j)==a&&gcd(i,j)==b) //如果用函数算出来i和j的最大公约数和最小公倍数与a,b相等
{
ans++;//标记加1
}
}
cout<<ans; //输出
return 0;
}

不带注释版[坏笑]

#include<iostream>
using namespace std;
int ans;
int lcm(int a,int b)
{
if(a<b)
{
swap(a,b);
}
if(a%b==0)
{
return b;
}
else
{
return lcm(b,a%b);
}
}
int gcd(int a,int b)
{
return (a*b/lcm(a,b));
}
int main()
{
int a,b;
cin>>a>>b;
while(1) cout<<"(‘_’)";
for(int i=a;i<=b;i++)
{
int j=a*b/i;
if(lcm(i,j)==a&&gcd(i,j)==b)
{
ans++;
}
}
cout<<ans;
return 0;
}

P1029 最大公约数和最小公倍数问题(普及−) 题解的更多相关文章

  1. [洛谷P1029]最大公约数与最小公倍数问题 题解(辗转相除法求GCD)

    [洛谷P1029]最大公约数与最小公倍数问题 Description 输入二个正整数x0,y0(2<=x0<100000,2<=y0<=1000000),求出满足下列条件的P, ...

  2. 洛谷——P1029 最大公约数和最小公倍数问题

    P1029 最大公约数和最小公倍数问题 题目描述 输入二个正整数x0,y0(2<=x0<100000,2<=y0<=1000000),求出满足下列条件的P,Q的个数 条件: 1 ...

  3. 【数论】P1029 最大公约数和最小公倍数问题

    题目链接 P1029 最大公约数和最小公倍数问题 思路 如果有两个数a和b,他们的gcd(a,b)和lcm(a,b)的乘积就等于ab. 也就是: ab=gcd(a,b)*lcm(a,b) 那么,接下来 ...

  4. 洛谷P1029 最大公约数和最小公倍数问题 [2017年6月计划 数论02]

    P1029 最大公约数和最小公倍数问题 题目描述 输入二个正整数x0,y0(2<=x0<100000,2<=y0<=1000000),求出满足下列条件的P,Q的个数 条件: 1 ...

  5. P1029最大公约数和最小公倍数

    P1029最大公约数和最小公倍数 #include <iostream> #include <cmath> #include <algorithm> #define ...

  6. 洛谷P1029 最大公约数和最小公倍数问题 题解

    题目链接:https://www.luogu.com.cn/problem/P1029 题目描述 输入 \(2\) 个正整数 \(x_0,y_0(2 \le x_0 \lt 100000,2 \le ...

  7. P1029 最大公约数和最小公倍数问题(思维题)

    题目描述 输入22个正整数x_0,y_0(2 \le x_0<100000,2 \le y_0<=1000000)x0​,y0​(2≤x0​<100000,2≤y0​<=100 ...

  8. 洛谷 P1029 最大公约数和最小公倍数问题 Label:Water&&非学习区警告

    题目描述 输入二个正整数x0,y0(2<=x0<100000,2<=y0<=1000000),求出满足下列条件的P,Q的个数 条件: 1.P,Q是正整数 2.要求P,Q以x0为 ...

  9. luogu P1029 最大公约数和最小公倍数问题

    https://www.luogu.org/problem/show?pid=1029 输入二个正整数x0,y0(2<=x0<100000,2<=y0<=1000000),求出 ...

  10. 洛谷P1029 最大公约数和最小公倍数问题

    题目描述 输入二个正整数x0,y0(2<=x0<100000,2<=y0<=1000000),求出满足下列条件的P,Q的个数 条件: 1.P,Q是正整数 2.要求P,Q以x0为 ...

随机推荐

  1. 是时候丢掉BeanUtils了

    前言 为了更好的进行开发和维护,我们都会对程序进行分层设计,例如常见的三层,四层,每层各司其职,相互配合.也随着分层,出现了VO,BO,PO,DTO,每层都会处理自己的数据对象,然后向上传递,这就避免 ...

  2. centos7安装weblogic

    前言 简介:weblogic是java应用服务器软件的一种,类似于tomcat,但功能更多,适用于大型应用场景. 版本: 系统:centos 7(最小化安装,无图形化界面) jdk: oraclejd ...

  3. MyBatis Mapper映射处理CLOB和BLOB类型

    ​Mybatis的MapperXML映射文件应该处理数据库字段类型为CLOB和BLOB类型的数据呢?首先我们先看下CLOB和BLOB这两种数据类型的介绍. 介绍 使用Mybatis时涉及到两种特殊类型 ...

  4. 标题:在Godot中使用Node2D创建自定义的Label

    在Godot游戏引擎中,我们经常需要在游戏中显示文本信息.通常,我们可以使用Label节点来实现这一点.但是,在某些情况下,你可能希望更灵活地控制文本的显示和样式.在本篇博客中,我们将学习如何通过使用 ...

  5. torch.nn基础学习教程 | PyTorch nn Basic Tutorial

    基于torch.nn搭建神经网络的基础教程大纲: 1. 引言 在我们开始深入探讨torch.nn之前,我们首先需要理解PyTorch及其神经网络库的基础知识.这一部分的内容将帮助你对PyTorch有一 ...

  6. 《Linux基础》09. Shell 编程

    @ 目录 1:Shell 简介 2:Shell 脚本 2.1:规则与语法 2.2:执行方式 2.3:第一个 Shell 脚本 3:变量 3.1:系统变量 3.2:用户自定义变量 3.2.1:规则 3. ...

  7. 《小白WEB安全入门》01. 扫盲篇

    @ 目录 基础知识 什么是WEB 什么是前端 什么是后端 什么是数据库 什么是协议 什么是WEB安全 什么是服务器 什么是IP地址.端口 什么是局域网.广域网.内网.外网 什么是URL 什么是MAC地 ...

  8. 详细讲解js实现电梯导航

    场景 对于某一个页面内容繁多, 如果我们滚动的时间较长,为了增加用户体验. 我们需要实现点击某一个按钮,然后滚动到对应的区域. 滚动的时候,右侧对应的分类实现高亮 其实,这个功能就2个步骤: 1.点击 ...

  9. 搭建eureka服务注册中心,单机版

    单独搭建的 搭建springboot项目 (1)pom文件 <?xml version="1.0" encoding="UTF-8"?> <p ...

  10. 【uniapp】【微信小程序】wxml-to-canvas

    真是搞吐了,研究了整整两天,困死我了 本来使用生成二维码插件好好的,插件页也支持导出二维码图片,可是领导说要带上文件的名称,那就涉及html转图片了,当然也可以改二维码插件的源码,不过源码做了混淆,看 ...