数据聚合

1、数据聚合

聚合(aggregations可以让我们极其方便的实现对数据的统计、分析、运算。例如:

  • 什么品牌的手机最受欢迎?

  • 这些手机的平均价格、最高价格、最低价格?

  • 这些手机每月的销售情况如何?

实现这些统计功能的比数据库的sql要方便的多,而且查询速度非常快,可以实现近实时搜索效果。

2、聚合的种类

聚合常见的有三类:

  • 桶(Bucket)聚合:用来对文档做分组

    • TermAggregation:按照文档字段值分组,例如按照品牌值分组、按照国家分组

    • Date Histogram:按照日期阶梯分组,例如一周为一组,或者一月为一组

  • 度量(Metric)聚合:用以计算一些值,比如:最大值、最小值、平均值等

    • Avg:求平均值

    • Max:求最大值

    • Min:求最小值

    • Stats:同时求max、min、avg、sum等

  • 管道(pipeline)聚合:其它聚合的结果为基础做聚合

注意:参加聚合的字段必须是keyword、日期、数值、布尔类型

3、DSL实现聚合

一、Bucket聚合语法

语法如下:

GET /hotel/_search
{
"size": 0, // 设置size为0,结果中不包含文档,只包含聚合结果
"aggs": { // 定义聚合
"brandAgg": { //给聚合起个名字
"terms": { // 聚合的类型,按照品牌值聚合,所以选择term
"field": "brand", // 参与聚合的字段
"size": 20 // 希望获取的聚合结果数量
}
}
}
}

结果:

二、聚合排序

默认情况下,Bucket聚合会统计Bucket内的文档数量,记为count,并且按照count降序排序。

我们可以指定order属性,自定义聚合的排序方式:

GET /hotel/_search
{
  "size": 0, 
  "aggs": {
    "brandAgg": {
      "terms": {
        "field": "brand",
        "order": {
          "_count": "asc" // 按照_count升序排列
        },
        "size": 20
      }
    }
  }
}

三、限定聚合范围

默认情况下,Bucket聚合是对索引库的所有文档做聚合,但真实场景下,用户会输入搜索条件,因此聚合必须是对搜索结果聚合。那么聚合必须添加限定条件。

我们可以限定要聚合的文档范围,只要添加query条件即可:

GET /hotel/_search
{
  "query": {
    "range": {
      "price": {
        "lte": 200 // 只对200元以下的文档聚合
      }
    }
  }, 
  "size": 0, 
  "aggs": {
    "brandAgg": {
      "terms": {
        "field": "brand",
        "size": 20
      }
    }
  }
}

四、Metric聚合

GET /hotel/_search
{
  "size": 0, 
  "aggs": {
    "brandAgg": { 
      "terms": { 
        "field": "brand", 
        "size": 20
      },
      "aggs": { // 是brands聚合的子聚合,也就是分组后对每组分别计算
        "score_stats": { // 聚合名称
          "stats": { // 聚合类型,这里stats可以计算min、max、avg等
            "field": "score" // 聚合字段,这里是score
          }
        }
      }
    }
  }
}

结果:

4、总结

aggs代表聚合,与query同级,此时query的作用是?

  • 限定聚合的的文档范围

聚合必须的三要素:

  • 聚合名称

  • 聚合类型

  • 聚合字段

聚合可配置属性有:

  • size:指定聚合结果数量

  • order:指定聚合结果排序方式

  • field:指定聚合字段

4、RestAPI实现聚合

聚合条件与query条件同级别,因此需要使用request.source()来指定聚合条件。

聚合条件的语法:

聚合的结果也与查询结果不同,API也比较特殊。不过同样是JSON逐层解析:

测试代码:

 @Test
public void terms() throws IOException {
// 1 构建查询请求
SearchRequest request = new SearchRequest("hotel");
// 2 构造DSL
request.source().size(0);
request.source().aggregation(AggregationBuilders
.terms("brandAggs")
.field("brand")
.size(10)
);
// 3 发起查询,获取响应
SearchResponse response = client.search(request, RequestOptions.DEFAULT);
// 4 解析响应
Aggregations aggregations = response.getAggregations();
Terms terms = aggregations.get("brandAggs");
List<? extends Terms.Bucket> buckets = terms.getBuckets();
for (Terms.Bucket bucket : buckets) {
System.out.println(bucket.getKeyAsString()+"-"+bucket.getDocCount());
}
}

自动补全

1、拼音分词器

拼音分词器下载路径:https://www.aliyundrive.com/s/cQ8BsrS13nN

测试:

POST /_analyze
{
  "text": "如家酒店还不错",
  "analyzer": "pinyin"
}

2、自定义分词器

默认的拼音分词器会将每个汉字单独分为拼音,而我们希望的是每个词条形成一组拼音,需要对拼音分词器做个性化定制,形成自定义分词器。

elasticsearch中分词器(analyzer)的组成包含三部分:

  • character filters:在tokenizer之前对文本进行处理。例如删除字符、替换字符

  • tokenizer:将文本按照一定的规则切割成词条(term)。例如keyword,就是不分词;还有ik_smart

  • tokenizer filter:将tokenizer输出的词条做进一步处理。例如大小写转换、同义词处理、拼音处理等

文档分词时会依次由这三部分来处理文档:

声明自定义分词器的语法如下:

PUT /test
{
  "settings": {
    "analysis": {
      "analyzer": { // 自定义分词器
        "my_analyzer": {  // 分词器名称
          "tokenizer": "ik_max_word",
          "filter": "py"
        }
      },
      "filter": { // 自定义tokenizer filter
        "py": { // 过滤器名称
          "type": "pinyin", // 过滤器类型,这里是pinyin
"keep_full_pinyin": false,
          "keep_joined_full_pinyin": true,
          "keep_original": true,
          "limit_first_letter_length": 16,
          "remove_duplicated_term": true,
          "none_chinese_pinyin_tokenize": false
        }
      }
    }
  },
  "mappings": {
    "properties": {
      "name": {
        "type": "text",
        "analyzer": "my_analyzer",
        "search_analyzer": "ik_smart"
      }
    }
  }
}

测试:

总结:

如何使用拼音分词器?

  • ①下载pinyin分词器

  • ②解压并放到elasticsearch的plugin目录

  • ③重启即可

如何自定义分词器?

  • ①创建索引库时,在settings中配置,可以包含三部分

  • ②character filter

  • ③tokenizer

  • ④filter

拼音分词器注意事项?

  • 为了避免搜索到同音字,搜索时不要使用拼音分词器

3、自动补全查询

elasticsearch提供了Completion Suggester查询来实现自动补全功能。这个查询会匹配以用户输入内容开头的词条并返回。为了提高补全查询的效率,对于文档中字段的类型有一些约束:

  • 参与补全查询的字段必须是completion类型。

  • 字段的内容一般是用来补全的多个词条形成的数组。

比如,一个这样的索引库:

// 创建索引库
PUT test
{
  "mappings": {
    "properties": {
      "title":{
        "type": "completion"
      }
    }
  }
}

然后插入下面的数据:

// 示例数据
POST test/_doc
{
  "title": ["Sony", "WH-1000XM3"]
}
POST test/_doc
{
  "title": ["SK-II", "PITERA"]
}
POST test/_doc
{
  "title": ["Nintendo", "switch"]
}

查询的DSL语句如下:

// 自动补全查询
GET /test/_search
{
  "suggest": {
    "title_suggest": {
      "text": "s", // 关键字
      "completion": {
        "field": "title", // 补全查询的字段
        "skip_duplicates": true, // 跳过重复的
        "size": 10 // 获取前10条结果
      }
    }
  }
}

4、自动补全的JavaAPI

之前我们学习了自动补全查询的DSL,而没有学习对应的JavaAPI,这里给出一个示例:

而自动补全的结果也比较特殊,解析的代码如下:


数据同步

常见的数据同步方案有三种:

  • 同步调用
  • 异步通知
  • 监听binlog

方案一:同步调用

基本步骤如下:

  • hotel-demo对外提供接口,用来修改elasticsearch中的数据

  • 酒店管理服务在完成数据库操作后,直接调用hotel-demo提供的接口,

方案二:异步通知

流程如下:

  • hotel-admin对mysql数据库数据完成增、删、改后,发送MQ消息

  • hotel-demo监听MQ,接收到消息后完成elasticsearch数据修改

方案三:监听binlog

流程如下:

  • 给mysql开启binlog功能

  • mysql完成增、删、改操作都会记录在binlog中

  • hotel-demo基于canal监听binlog变化,实时更新elasticsearch中的内容

方式一:同步调用

  • 优点:实现简单,粗暴

  • 缺点:业务耦合度高

方式二:异步通知

  • 优点:低耦合,实现难度一般

  • 缺点:依赖mq的可靠性

方式三:监听binlog

  • 优点:完全解除服务间耦合

  • 缺点:开启binlog增加数据库负担、实现复杂度高

1、MQ方式实现数据同步

详细过程:https://www.aliyundrive.com/s/ZqvwHS8BMJM


集群

单机的elasticsearch做数据存储,必然面临两个问题:海量数据存储问题、单点故障问题。

  • 海量数据存储问题:将索引库从逻辑上拆分为N个分片(shard),存储到多个节点

  • 单点故障问题:将分片数据在不同节点备份(replica )

ES集群相关概念:

  • 集群(cluster):一组拥有共同的 cluster name 的 节点。

  • 节点(node) :集群中的一个 Elasticearch 实例

  • 分片(shard):索引可以被拆分为不同的部分进行存储,称为分片。在集群环境下,一个索引的不同分片可以拆分到不同的节点中

    解决问题:数据量太大,单点存储量有限的问题。

此处,我们把数据分成3片:shard0、shard1、shard2

  • 主分片(Primary shard):相对于副本分片的定义。

  • 副本分片(Replica shard)每个主分片可以有一个或者多个副本,数据和主分片一样。

数据备份可以保证高可用,但是每个分片备份一份,所需要的节点数量就会翻一倍,成本实在是太高了!

为了在高可用和成本间寻求平衡,我们可以这样做:

  • 首先对数据分片,存储到不同节点

  • 然后对每个分片进行备份,放到对方节点,完成互相备份

1、集群搭建

参考:https://www.aliyundrive.com/s/nkgG16k6RqU

2、集群的脑裂问题

一、集群的职责划分

elasticsearch中集群节点有不同的职责划分:

默认情况下,集群中的任何一个节点都同时具备上述四种角色。

但是真实的集群一定要将集群职责分离:

  • master节点:对CPU要求高,但是内存要求第

  • data节点:对CPU和内存要求都高

  • coordinating节点:对网络带宽、CPU要求高

职责分离可以让我们根据不同节点的需求分配不同的硬件去部署。而且避免业务之间的互相干扰。

一个典型的es集群职责划分如图:

二、脑裂问题

脑裂是因为集群中的节点失联导致的。

失联导致集群中的master节点在新产生集群中重新选举主节点,当故障或网络等异常情况恢复后,出现同一集群出现多个主节点的现象。

解决脑裂的方案是,要求选票超过 ( eligible节点数量 + 1 )/ 2 才能当选为主,因此eligible节点数量最好是奇数。对应配置项是discovery.zen.minimum_master_nodes,在es7.0以后,已经成为默认配置,因此一般不会发生脑裂问题

总结:

master eligible节点的作用是什么?

  • 参与集群选主

  • 主节点可以管理集群状态、管理分片信息、处理创建和删除索引库的请求

data节点的作用是什么?

  • 数据的CRUD

coordinator节点的作用是什么?

  • 路由请求到其它节点

  • 合并查询到的结果,返回给用户

2、集群的分布式存储

一、分片存储的原理

elasticsearch会通过hash算法来计算文档应该存储到哪个分片:

说明:

  • _routing默认是文档的id

  • 算法与分片数量有关,因此索引库一旦创建,分片数量不能修改!

新增文档的流程如下:

解读:

  • 1)新增一个id=1的文档

  • 2)对id做hash运算,假如得到的是2,则应该存储到shard-2

  • 3)shard-2的主分片在node3节点,将数据路由到node3

  • 4)保存文档

  • 5)同步给shard-2的副本replica-2,在node2节点

  • 6)返回结果给coordinating-node节点

二、集群的分布式查询

elasticsearch的查询分成两个阶段:

  • scatter phase:分散阶段,coordinating node会把请求分发到每一个分片

  • gather phase:聚集阶段,coordinating node汇总data node的搜索结果,并处理为最终结果集返回给用户

三、集群的故障转移

集群的master节点会监控集群中的节点状态,如果发现有节点宕机,会立即将宕机节点的分片数据迁移到其它节点,确保数据安全,这个叫做故障转移。

1)例如一个集群结构如图:

现在,node1是主节点,其它两个节点是从节点。

2)突然,node1发生了故障:

宕机后的第一件事,需要重新选主,例如选中了node2:

node2成为主节点后,会检测集群监控状态,发现:shard-1、shard-0没有副本节点。因此需要将node1上的数据迁移到node2、node3:

ElasticSearch-聚合、自动补全、集群、数据同步的更多相关文章

  1. Eureka应用注册与集群数据同步源码解析

    在之前的EurekaClient自动装配及启动流程解析一文中我们提到过,在构造DiscoveryClient类时,会把自身注册到服务端,本文就来分析一下这个注册流程 客户端发起注册 boolean r ...

  2. Elasticsearch多集群数据同步

    有时多个Elasticsearch集群避免不了要同步数据,网上查找了下数据同步工具还挺多,比较常用的有:elasticserach-dump.elasticsearch-exporter.logsta ...

  3. elasticsearch 不同集群数据同步

    采用快照方式 1.源集群采用NFS,注意权限 2.共享目录完成后,在所有ES服务器上挂载为同一目录 3.创建快照仓库 put _snapshot/my_backup{ "type" ...

  4. mysql 集群 数据同步

    mysql集群配置在网站负载均衡中是必不可少的: 首先说下我个人准备的负载均衡方式: 1.通过nginx方向代理来将服务器压力分散到各个服务器上: 2.每个服务器中代码逻辑一样: 3.通过使用redi ...

  5. 008 Ceph集群数据同步

    介绍,目前已经创建一个名为ceph的Ceph集群,和一个backup(单节点)Ceph集群,是的这两个集群的数据可以同步,做备份恢复功能 一.配置集群的相互访问 1.1 安装rbd mirror rb ...

  6. Qt Style Sheet实践(四):行文本编辑框QLineEdit及自动补全

    导读 行文本输入框在用于界面的文本输入,在WEB登录表单中应用广泛.一般行文本编辑框可定制性较高,既可以当作密码输入框,又可以作为文本过滤器.QLineEdit本身使用方法也很简单,无需过多的设置就能 ...

  7. Redis 实战 —— 08. 实现自动补全、分布式锁和计数信号量

    自动补全 P109 自动补全在日常业务中随处可见,应该算一种最常见最通用的功能.实际业务场景肯定要包括包含子串的情况,其实这在一定程度上转换成了搜索功能,即包含某个子串的串,且优先展示前缀匹配的串.如 ...

  8. 卸载K8s集群及k8s命令自动补全

    一.配置命令自动补全 yum install -y bash-completion source /usr/share/bash-completion/bash_completion source & ...

  9. java整合Elasticsearch,实现crud以及高级查询的分页,范围,排序功能,泰文分词器的使用,分组,最大,最小,平均值,以及自动补全功能

    //为index创建mapping,index相当于mysql的数据库,数据库里的表也要给各个字段创建类型,所以index也要给字段事先设置好类型: 使用postMan或者其他工具创建:(此处我使用p ...

  10. ElasticSearch 实现分词全文检索 - 搜素关键字自动补全(Completion Suggest)

    目录 ElasticSearch 实现分词全文检索 - 概述 ElasticSearch 实现分词全文检索 - ES.Kibana.IK安装 ElasticSearch 实现分词全文检索 - Rest ...

随机推荐

  1. MB52增强

    一.在MB52报表中新增字段 实现如图效果 二.增强实现 MB52程序为RM07MLBS,在程序中找到定义的内表结构bestand,在最后创建隐式增强,加入增强字段,该内表为将来展示的ALV数据 设置 ...

  2. 在 HTML 页面中使用 React

    该方案使用场景:在html页面中使用react,主js文件index.js和其它非react功能使用js模块化的方式开发,适合轻量级中小型应用 index.html代码: 引入react.react- ...

  3. #2037:今年暑假不AC

    Problem Description "今年暑假不AC?" "是的." "那你干什么呢?" "看世界杯呀,笨蛋!" & ...

  4. 用ArcGIS模型构建器生成、导出Python转换空间坐标系的代码

      本文介绍在ArcMap软件中,通过创建模型构建器(ModelBuilder),导出地理坐标系与投影坐标系之间相互转换的Python代码的方法.   在GIS领域中,矢量.栅格图层的投影转换是一个经 ...

  5. java编译期和运行期和string原理

     编译期:   是指把源码交给编译器编译成计算机可以执行的文件的过程.在Java中也就是把Java代码编成class文件的过程.编译期只是做了一些翻译功能,并没有把代码放在内存中运行起来,而只是把代码 ...

  6. 你折腾一天都装不上的插件,函数计算部署 Stable Diffusion 都内置了

    在进行函数计算 Stable Diffusion 答疑的过程中,遇到很多同学在装一些插件的过程中遇到了难题,有一些需要安装一些依赖,有一些需要写一些代码,很多时候安装一个插件就能折腾几天,我们收集了很 ...

  7. 七、java操作swift对象存储(动态大对象)

    系列导航 一.swift对象存储环境搭建 二.swift添加存储策略 三.swift大对象--动态大对象 四.swift大对象--静态态大对象 五.java操作swift对象存储(官网样例) 六.ja ...

  8. u-swipe-action 宽度计算的延迟导致组件加载时内部样式错误

    https://toscode.gitee.com/umicro/uView/issues/I1Y50J 左图为电脑显示效果,右图为app显示效果. 原因:u-swipe-action 宽度计算的延迟 ...

  9. go Print 和 反射

    0. 前言 在 小白学标准库之反射 reflect 篇中介绍了反射的三大法则.但并未给出具体示例介绍反射,感觉还是少了点什么.这里进一步通过fmt.Println 源码,查看反射如何使用的,算是对前文 ...

  10. Nacos源码 (1) 源码编译及idea环境

    本文介绍从gitee下载nacos源码,在本地编译,并导入idea进行本地调试. 从gitee下载源码 由于github访问速度慢,所以我选择使用gitee的镜像仓库: git clone https ...