link。

如果做过 codeforces - 1144G 那这题最多 *2200。

序列中的最大值必然为其中一个拐点,不妨设 \(a_p = a_\max\),先讨论另一个拐点 \(i\) 在 \(p\) 左侧的情况。于是问题转化为规划 \([1, i)\),\((i, p)\),\((p, n]\) 几个区间中的数给 \(i\) 还是给 \(p\)。

  • 对于 \([1, i)\),令 \(dp[i]\) 表示将 \([1, i]\) 分为两个 strictly increasing subsequence,其中不以 \(i\) 结尾的 subsequence 的结尾元素的最小值,分讨转移即可。

  • 对于 \((i, p)\),同 codeforces - 1144G,which is 这题唯一的难点。

  • 对于 \((p, n]\),同情况 1。

不太会写代码,,,参考了下 editorial,,,

#include <bits/stdc++.h>
#define cm(x, y) x = min(x, y)
#define cm2(x, y) x = max(x, y)
using namespace std;
int n, a[500100], pos, dp[500100], dp2[500100], dp3[500100][2];
int solve() {
pos = n;
for (int i=0; i<n; ++i) {
if (a[i] > a[pos]) {
pos = i;
}
}
dp[0] = -1;
for (int i=1; i<=pos; ++i) {
dp[i] = 1e9;
if (a[i] > dp[i-1]) {
cm(dp[i], a[i-1]);
}
if (a[i] > a[i-1]) {
cm(dp[i], dp[i-1]);
}
}
dp2[n-1] = -1;
for (int i = n-2; i>=pos; --i) {
dp2[i] = 1e9;
if (a[i] > dp2[i+1]) {
cm(dp2[i], a[i+1]);
}
if (a[i] > a[i+1]) {
cm(dp2[i], dp2[i+1]);
}
}
int res = 0;
dp3[pos][0] = dp[pos];
for (int i=pos+1; i<n; ++i) {
dp3[i][0] = 1e9;
dp3[i][1] = -1e9;
if (a[i-1] > a[i]) {
cm(dp3[i][0], dp3[i-1][0]);
}
if (dp3[i-1][1] > a[i]) {
cm(dp3[i][0], a[i-1]);
}
if (a[i-1] < a[i]) {
cm2(dp3[i][1], dp3[i-1][1]);
}
if (dp3[i-1][0] < a[i]) {
cm2(dp3[i][1], a[i-1]);
}
res += dp3[i][1] > dp2[i];
}
return res;
}
signed main() {
ios::sync_with_stdio(0);
cin.tie(0);
cin >> n;
for (int i=0; i<n; ++i) {
cin >> a[i];
}
int ret = solve();
reverse(a, a+n);
cout << ret+solve() << "\n";
}

「codeforces - 1674F」Madoka and Laziness的更多相关文章

  1. 「CodeForces 581D」Three Logos

    BUPT 2017 Summer Training (for 16) #3A 题意 给你三个矩形,需要不重叠不留空地组成一个正方形.不存在输出-1,否则输出边长和这个正方形(A,B,C表示三个不同矩形 ...

  2. 「CodeForces - 50C 」Happy Farm 5 (几何)

    BUPT 2017 summer training (16) #2B 题意 有一些二维直角坐标系上的整数坐标的点,找出严格包含这些点的只能八个方向走出来步数最少的路径,输出最少步数. 题解 这题要求严 ...

  3. 「CodeForces - 598B」Queries on a String

    BUPT 2017 summer training (for 16) #1I 题意 字符串s(1 ≤ |s| ≤ 10 000),有m(1 ≤ m ≤ 300)次操作,每次给l,r,k,代表将r位置插 ...

  4. 「CodeForces - 717E」Paint it really, really dark gray (dfs)

    BUPT 2017 summer training (for 16) #1H 题意 每个节点是黑色or白色,经过一个节点就会改变它的颜色,一开始在1节点.求一条路径使得所有点变成黑色. 题解 dfs时 ...

  5. 「CodeForces 476A」Dreamoon and Stairs

    Dreamoon and Stairs 题意翻译 题面 DM小朋友想要上一个有 \(n\) 级台阶的楼梯.他每一步可以上 \(1\) 或 \(2\) 级台阶.假设他走上这个台阶一共用了 \(x\) 步 ...

  6. 「CodeForces 546B」Soldier and Badges 解题报告

    CF546B Soldier and Badges 题意翻译 给 n 个数,每次操作可以将一个数 +1,要使这 n 个数都不相同, 求最少要加多少? \(1 \le n \le 3000\) 感谢@凉 ...

  7. 「Codeforces 79D」Password

    Description 有一个 01 序列 \(a_1,a_2,\cdots,a_n\),初始时全为 \(0\). 给定 \(m\) 个长度,分别为 \(l_1\sim l_m\). 每次可以选择一个 ...

  8. 「Codeforces 468C」Hack it!

    Description 定义 \(f(x)\) 表示 \(x\) 的各个数位之和.现在要求 \(\sum_{i=l}^rf(i)\bmod a\). 显然 ans=solve(l,r)%a; if(a ...

  9. 「Codeforces 724F」Uniformly Branched Trees

    题目大意 如果两棵树可以通过重标号后变为完全相同,那么它们就是同构的. 将中间节点定义为度数大于 \(1\) 的节点.计算由 \(n\) 个节点,其中所有的中间节点度数都为 \(d\) 的互不同构的树 ...

  10. 「codeforces - 1284G」Seollal

    给定 \(n\times m\) 的网格图,有些格子有障碍,无障碍且相邻的格子之间连边形成图.保证 \((1, 1)\) 无障碍,保证无障碍格子连通. 将网格图黑白染色,相邻格子颜色不同,\((1, ...

随机推荐

  1. Gitlab Registries

    在项目开发和部署过程中,我们常常需要一套私有仓库,比如 Code Repository.Package Repository,Docker Registry 等. Code Repository:在 ...

  2. 使用 conda 和 Jupyter 在 R 中实现数据科学分析

    前两篇文章我们介绍了 Jupyter Notebook 的一些基础用法,今天我们来介绍一下如何使用 conda 和 Jupyter 在 R 中开始一个数据科学项目. 在开始之前我们先要明确一个概念:K ...

  3. 我在 vscode 插件里接入了 ChatGPT,解决了代码变量命名的难题

    lowcode 插件 已经迭代了差不多3年.作为我的生产力工具,平常一些不需要动脑的搬砖活基本上都是用 lowcode 去完成,比如管理脚手架,生成 CURD 页面,根据接口文档生成 TS 类型,生成 ...

  4. CF1034D Intervals of Intervals

    简要题意 给定 \(n\) 个区间组成的序列,定义它的一个连续段的价值为这个段内所有区间的并覆盖的长度.求价值前 \(k\) 大的段的价值和. 数据范围:\(1\le n\le 3\times 10^ ...

  5. Python运维开发之路《函数进阶》

    面向对象类的进阶 抽象类 python 没有抽象类.接口的概念,所以要实现这种功能需要导入abc模块 py2:导入abc函数,_metaclass__ = abc.ABCMeta;在强制调用类下:@a ...

  6. ArrayList 扩容机制

    ArrayList 基本介绍 ArrayList实现了List接口.它可以存储包括null的任何类型的对象,允许重复元素.ArrayList在内部使用一个数组来存储元素,当元素数量超过数组容量时,Ar ...

  7. SQL ERVER 表转化为C#实体(SQL 代码)

    本文推出SqlServer表转化为实体的sql代码 在VS中有可以自带生成实体类的快捷操作,但是生成的代码比较杂乱,很多东西都是不需要的,一个一个去敲又很浪费时间,关键太无聊了 在闲暇之余写一份代码供 ...

  8. 【原创】Ftrace使用及实现机制

    Ftrace使用及实现机制 版权声明:本文为本文为博主原创文章,转载请注明出处 https://www.cnblogs.com/wsg1100 如有错误,欢迎指正. 目录 Ftrace使用及实现机制 ...

  9. Redis的五大数据类型及其使用场景

    前言 redis是一个非常快速‎‎的非关系数据库‎‎解决方案.其简单的键值数据模型使 Redis 能够处理大型数据集,同时保持令人印象深刻的读写速度和可用性.‎redis提供了五种数据类型,分别是是: ...

  10. 【渗透测试】Cobalt Strike制作钓鱼邮件渗透Windows

    目标 在kali中使用Cobalt Strike制作钓鱼邮件,对Windows进行渗透 机器环境 kali(服务端):192.168.175.129 win11(攻击机):192.168.175.12 ...