1.1 Vectors

We have n separate numbers \(v_1、v_2、v_3,...,v_n\),that produces a n-dimensional vector \(v\),and \(v\) is represented by an arrow.

\[v=\left[
\begin{matrix}
v_1 \\
v_2 \\
.\\
.\\
.\\
v_n
\end{matrix}
\right] = (v_1,v_2,...,v_n)
\]

Two-dimensional vector :\(v = \left[\begin{matrix} v_1 \\ v_2 \end{matrix}\right]\) and \(w = \left[\begin{matrix} w_1 \\ w_2 \end{matrix}\right]\)

  • Vector Addition : \(v + w = \left[\begin{matrix} v_1 + w_1 \\ v_2 + w_2\end{matrix}\right]\)
  • Scalar Multiplication : \(cv = \left[\begin{matrix} cv_1 \\ cv_2 \end{matrix}\right]\),c is scalar.

1.2 Linear Combinations

Multiply \(v\) by \(c\) and multiply \(w\) by \(d\),the sum of \(cv\) and \(dw\) is a linear combination : \(cv + dw\).

We can visualize \(v + w\) using arrows,for example:

The combinations can fill Line、Plane 、or 3-dimensional space:

  • The combinations \(cu\) fill a line through origin.
  • The combinations \(cu + dv\) fill a plane throught origin
  • The combinations \(cu + dv +ew\) fill three-dimensional space throught origin.

1.3 Lengths and Dot Products

Dot Product/ Inner Product: \(v \cdot w = v_1w_1 + v_2w_2\),where $v = (v_1, v_2) $ and \(w=(w_1, w_2)\) ,the dot product \(w \cdot v\) equals \(v \cdot w\)

Length : \(||v|| = \sqrt{v \cdot v} = (v_1^2 + v_2^2 + v_3^2 +...+ v_n^2)^{1/2}\)

Unit vector : \(u = v /||v||\) is a unit vector in the same direction as \(v\),length =1

Perpendicular vector : \(v \cdot w = 0\)

Cosine Formula : if \(v\) and \(w\) are nonzero vectors then \(\frac{v \cdot w}{||v|| \ ||w||} = cos \theta\) , \(\theta\) is the angle between \(v\) and \(w\)

Schwarz Inequality : \(|v \cdot w| \leq ||v|| \ ||w||\)

Triangel Inequality : \(||v + w|| \leq ||v|| + ||w||\)

1.4 Matrices

1、\(A = \left[ \begin{matrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{matrix}\right]\) is a 3 by 2 matrix : m=2 rows and n=2 columns

2、$Ax = b $ is a linear combination of the columns A

3、 Combination of the vectors : \(Ax = x_1\left[ \begin{matrix} 1 \\ -1 \\ 0 \end{matrix} \right] + x_2\left[ \begin{matrix} 0 \\ 1 \\ -1 \end{matrix} \right] + x_3\left[ \begin{matrix} 0 \\ 0 \\ 1 \end{matrix} \right] = \left[ \begin{matrix} x_1 \\ x_2-x_1 \\ x_3-x_2 \end{matrix} \right]\)

4、Matrix times Vector : $Ax = \left[ \begin{matrix} 1&0&0\ -1&1&0 \ 0&-1&1 \end{matrix} \right] \left[ \begin{matrix} x_1\ x_2 \ x_3 \end{matrix} \right]= \left[ \begin{matrix} x_1 \ x_2-x_1 \ x_3-x_2 \end{matrix} \right] $

5、Linear Equation : Ax = b --> \(\begin{matrix} x_1 = b_1 \\ -x_1 + x_2 = b_2 \\ -x_2 + x_3 = b_3 \end{matrix}\)

6、Inverse Solution : \(x = A^{-1}b\) -- > \(\begin{matrix} x_1 = b_1 \\ x_2 = b_1 + b_2 \\ x_3 =b_1 + b_2 + b_3 \end{matrix}\), when A is an invertible matrix

7、Independent columns : Ax = 0 has one solution, A is an invertible matrix, the column vectors of A are independent. (example: \(u,v,w\) are independent,No combination except \(0u + 0v + 0w = 0\) gives \(b=0\))

8、Dependent columns : Cx = 0 has many solutions, C is a singular matrix, the column vectors of C are dependent. (example: \(u,v,w^*\) are dependent,other combinations like \(au + cv + dw^*\) gives \(b=0\))

1. Vectors and Linear Combinations的更多相关文章

  1. 【读书笔记】:MIT线性代数(1):Linear Combinations

    1. Linear Combination Two linear operations of vectors: Linear combination: 2.Geometric Explaination ...

  2. 【线性代数】1-1:线性组合(Linear Combinations)

    title: [线性代数]1-1:线性组合(Linear Combinations) toc: true categories: Mathematic Linear Algebra date: 201 ...

  3. 线性代数导论 | Linear Algebra 课程

    搞统计的线性代数和概率论必须精通,最好要能锻炼出直觉,再学机器学习才会事半功倍. 线性代数只推荐Prof. Gilbert Strang的MIT课程,有视频,有教材,有习题,有考试,一套学下来基本就入 ...

  4. [MIT 18.06 线性代数]Intordution to Vectors向量初体验

    目录 1.1. Vectors and Linear Combinations向量和线性组合 REVIEW OF THE KEY IDEAS 1.2 Lengths and Dot Products向 ...

  5. Linear Algebra lecture1 note

    Professor: Gilbert Strang Text: Introduction to Linear Algebra http://web.mit.edu/18.06   Lecture 1 ...

  6. PRML-Chapter3 Linear Models for Regression

    Example: Polynomial Curve Fitting The goal of regression is to predict the value of one or more cont ...

  7. 大规模视觉识别挑战赛ILSVRC2015各团队结果和方法 Large Scale Visual Recognition Challenge 2015

    Large Scale Visual Recognition Challenge 2015 (ILSVRC2015) Legend: Yellow background = winner in thi ...

  8. What is an eigenvector of a covariance matrix?

    What is an eigenvector of a covariance matrix? One of the most intuitive explanations of eigenvector ...

  9. Getting started with machine learning in Python

    Getting started with machine learning in Python Machine learning is a field that uses algorithms to ...

  10. sklearn包学习

    1首先是sklearn的官网:http://scikit-learn.org/stable/ 在官网网址上可以看到很多的demo,下边这张是一张非常有用的流程图,在这个流程图中,可以根据数据集的特征, ...

随机推荐

  1. JS内存爆破问题

    原理 检测到调试,格式化等,疯狂的在js文件,或者html中进行读写,cookie重写追加,字节追加,导致内存不足够,卡死 内存爆破,指js通过死循环/频繁操作数据库(包括cookie)/频繁调取hi ...

  2. JVM运行时参数

    JVM运行时参数 JVM运行时参数是用于配置和调整Java虚拟机的行为和性能的参数.这些参数可以在启动Java应用程序时通过命令行或配置文件进行设置,合理配置参数可以使JVM虚拟机的达到更好的性能,降 ...

  3. 第127篇:异步函数(async和await)练习题(异步,消息队列)

    好家伙,本篇为做题思考 书接上文   题目如下:  1.请给出下列代码的输出结果,并配合"消息队列"写出相关解释 async function foo() { console.lo ...

  4. 【Azure Redis 缓存】使用Azure Redis服务时候,如突然遇见异常,遇见命令Timeout performing SET xxxxxx等情况,如何第一时间查看是否有Failover存在呢?

    问题描述 使用Azure Redis服务时,如突然遇见异常,命令Timeout performing SET xxxxxx等情况,如何第一时间查看是否有Failover存在呢?看是否有进行平台的维护呢 ...

  5. java基础 韩顺平老师的 面向对象(基础) 自己记的部分笔记

    194,对象内存布局 基本数据类型放在堆里面,字符串类型放在方法区. 栈:一般存放基本数据类型(局部变量) 堆:存放对象(Cat cat,数组等) 方法区:常量池(常量,比如字符串),类加载信息 19 ...

  6. [VueJsDev] 基础知识 - snippetsLab 代码片段

    [VueJsDev] 目录列表 https://www.cnblogs.com/pengchenggang/p/17037320.html 代码片段 ::: details 目录 目录 代码片段 St ...

  7. vscode 当做记事本,用任务 tasks 自动提交git - ctrl shift B

    vscode 当做记事本,用任务 tasks 自动提交git - ctrl shift B 起因 开始用的joplin 本地记事本挺好,唯一缺点不能同步. 用了一下,发现markdown是两栏的,变成 ...

  8. InputRegZen.vue 正则Input 限制输入框输入内容

    核心内容 已经 perfect,没有用外库,原生完成 用的 iview的Input组件 封装 // InputRegZen.vue <template> <div> <I ...

  9. git svn 提交代码日志填写规范 BUG NEW DEL CHG TRP gitz 日志z

    git svn 提交代码日志填写规范 BUG NEW DEL CHG TRP gitz 日志z

  10. Python中的join()函数的用法实例分析

    一.join()函数 语法:  'sep'.join(seq) 参数说明sep:分隔符.可以为空seq:要连接的元素序列.字符串.元组.字典上面的语法即:以sep作为分隔符,将seq所有的元素合并成一 ...