数(aqnum)

3.1 题目描述

秋锅对数论很感兴趣,他特别喜欢一种数字。秋锅把这种数字命名为 农数 ,英文名为 AQ number 。

这种数字定义如下:

定义 1 一个数 n 是农数,当且仅当对于每个质数 p ,要么 p ∤ n ,要么 p ≤ MAXPRIME

且存在一个 正奇数 k 使得 p k | n 且 p k+1 ∤ n 。

秋锅想知道,给定 N,MAXPRIME ,问 1 到 N 里面的农数有多少个呢?

3.2 输入格式

一行 2 个数,

分别为 N 和 MAXPRIME 。

3.3 输出格式

一行一个数,表示 1 到 N 中农数的个数。

3.4 样例输入

10 3

3.5 样例输出

5

3.6数据范围

对于 30% 的数据:N ≤ 1000

对于 60% 的数据:N ≤ 5 × 10^6

对于 100% 的数据:N ≤ 10^10 ,MAXPRIME ≤ 10^6

题解

搜索。怎么能想到它是搜索呐?

农数的因数满足小于等于maxprime,且指数为奇数,处理出小于等于maxprime的质数,枚举指数的情况,加一个剪枝,如果当前数*pri[i]^2>limit,停止搜索,二分一个最大的乘以当前数<=limi的质因子,答案加上这些质子,注意数据范围(最近总是忽略数据范围)。

写的时候,一直把upper_bound写成了lower_bound,傻傻分不清。

#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstdio>
using namespace std;
int pri[1000010];
long long sum=0,lim,ma,p;
bool o[1000010];
long long read()
{
long long ans=0,fu=1;char ch=getchar();
while(!isdigit(ch)) {if(ch=='-') fu=-1;ch=getchar();}
while(isdigit(ch)) {ans=ans*10+ch-'0';ch=getchar();}
return ans*fu;
}
void prime(int x)
{
p=0;
o[1]=1;
for(int i=2;i<=x;i++)
{
if(!o[i])
pri[++p]=i;
for(int j=1;j<=p&&pri[j]*i<=x;j++)
{
o[pri[j]*i]=1;
if(i%pri[j]==0)
break;
}
}
}
void search(long long x,int th) //x要开long long哦
{
if(th==p+1)
{
sum++;
return;
}
if(x*pri[th]>lim)
{
sum++;
return;
}
if(x*pri[th]*pri[th]>lim)
{
int pos=upper_bound(pri+1,pri+p+1,lim/x)-pri;
sum+=pos-th+1;
if(sum<0)
{
int debug=1;
}
return;
}
search(x,th+1);
for(int i=0;;i++)
{
if(x>lim)
return;
if(i&1)
search(x,th+1);
x*=pri[th];
}
}
int main()
{
freopen("aqnum.in","r",stdin);
freopen("aqnum.out","w",stdout);
lim=read(),ma=read();
prime(ma);
search((long long)1,1);
printf("%lld",sum);
return 0;
}

数(aqnum)的更多相关文章

  1. Linux上如何查看物理CPU个数,核数,线程数

    首先,看看什么是超线程概念 超线程技术就是利用特殊的硬件指令,把两个逻辑内核模拟成两个物理芯片,让单个处理器都能使用线程级并行计算,进而兼容多线程操作系统和软件,减少了CPU的闲置时间,提高的CPU的 ...

  2. 微信小程序中利用时间选择器和js无计算实现定时器(将字符串或秒数转换成倒计时)

    转载注明出处 改成了一个单独的js文件,并修改代码增加了通用性,点击这里查看 今天写小程序,有一个需求就是用户选择时间,然后我这边就要开始倒计时. 因为小程序的限制,所以直接选用时间选择器作为选择定时 ...

  3. 数塔问题(DP算法)自底向上计算最大值

    Input 输入数据首先包括一个整数C,表示测试实例的个数,每个测试实例的第一行是一个整数N(1 <= N <= 100),表示数塔的高度,接下来用N行数字表示数塔,其中第i行有个i个整数 ...

  4. 统计iOS项目的总代码行数的方法

    打开终端, 用cd命令 定位到工程所在的目录,然后调用以下命名即可把每个源代码文件行数及总数统计出来: find . "(" -name "*.m" -or - ...

  5. 数百个 HTML5 例子学习 HT 图形组件 – 3D建模篇

    http://www.hightopo.com/demo/pipeline/index.html <数百个 HTML5 例子学习 HT 图形组件 – WebGL 3D 篇>里提到 HT 很 ...

  6. 数百个 HTML5 例子学习 HT 图形组件 – 3D 建模篇

    http://www.hightopo.com/demo/pipeline/index.html <数百个 HTML5 例子学习 HT 图形组件 – WebGL 3D 篇>里提到 HT 很 ...

  7. 数百个 HTML5 例子学习 HT 图形组件 – WebGL 3D 篇

    <数百个 HTML5 例子学习 HT 图形组件 – 拓扑图篇>一文让读者了解了 HT的 2D 拓扑图组件使用,本文将对 HT 的 3D 功能做个综合性的介绍,以便初学者可快速上手使用 HT ...

  8. 数百个 HTML5 例子学习 HT 图形组件 – 拓扑图篇

    HT 是啥:Everything you need to create cutting-edge 2D and 3D visualization. 这口号是当年心目中的产品方向,接着就朝这个方向慢慢打 ...

  9. android手机旋转屏幕时让GridView的列数与列宽度自适应

    无意中打开了一年前做过的一个android应用的代码,看到里面实现的一个小功能点(如题),现写篇文章做个笔记.当时面临的问题是,在旋转屏幕的时候需要让gridview的列数与宽度能自适应屏幕宽度,每个 ...

随机推荐

  1. CodeVS3958 火车进站

    3958 火车进站 时间限制: 1 s 空间限制: 256000 KB 题目等级 : 大师 Master         题目描述 Description 火车站内往往设有一些主干线分叉出去的铁路支路 ...

  2. Javascript-正则表达式常用验证

    <div> <h1>一.判断中国邮政编码匹配</h1> <p>分析:中国邮政编码都是6位,且为纯数字</p> <div>邮政编码 ...

  3. 使用DIV+CSS布局网站的优点和缺陷

    随着WEB2.0标准化设计理念的普及,国内很多大型门户网站已经纷纷采用DIV+CSS制作方法,从实际应用情况来看,此种方法绝对好于表格制作页面的方法. 如今大部分网站仍然采用表格嵌套内容的方式来制作网 ...

  4. 前端如何实现图片懒加载(lazyload) 提高用户体验

    定义 图片懒加载又称图片延时加载.惰性加载,即在用户需要使用图片的时候加载,这样可以减少请求,节省带宽,提高页面加载速度,相对的,也能减少服务器压力. 惰性加载是程序人性化的一种体现,提高用户体验,防 ...

  5. 洛谷 P1016 旅行家的预算 模拟+贪心

    目录 题面 题目链接 题目描述 输入输出格式 输入格式 输出格式 输入输出样例 输入样例 输出样例 说明 思路 AC代码 总结 题面 题目链接 P1016 旅行家的预算 题目描述 一个旅行家想驾驶汽车 ...

  6. Leetcode766.Toeplitz Matrix托普利茨矩阵

    如果一个矩阵的每一方向由左上到右下的对角线上具有相同元素,那么这个矩阵是托普利茨矩阵. 给定一个 M x N 的矩阵,当且仅当它是托普利茨矩阵时返回 True. 示例 1: 输入: matrix = ...

  7. EMAS,一部淘宝十年移动互联网技术的演进史

    导读 本文根据2018云栖大会深圳峰会·EMAS专场—移动互联的进化论,阿里巴巴高级技术专家泠茗< EMAS全景介绍>的演讲整理而成,文中就EMAS的起源史及EMAS的五大移动研发场景解决 ...

  8. KNN最近邻算法

    算法概述 K最近邻(K-Nearest Neighbor,KNN)算法,是著名的模式识别统计学方法,在机器学习分类算法中占有相当大的地位.它是一个理论上比较成熟的方法.既是最简单的机器学习算法之一,也 ...

  9. 【转载】【技巧总结】PyCharm怎么克隆github上开源的项目

    PyCharm怎么clone github上开源的项目 一.先要确保PyCharm正确的配置了Git   如果你已经在PyCharm中配置好了Git,可以跳过此步骤,直接看下一步.   那么怎么在Py ...

  10. 第一章 Web应用程序开发基础

    一.HTTP协议工作机制 HTTP协议(HyperText Transfer Protocol,超文本传输协议)是用于从WWW服务器传输超文本到本地浏览器的传送协议.它是一种主流B/S架构中应用的通信 ...