最长回文

Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 11553    Accepted Submission(s): 4191

Problem Description
给出一个只由小写英文字符a,b,c...y,z组成的字符串S,求S中最长回文串的长度.
回文就是正反读都是一样的字符串,如aba, abba等
 
Input
输入有多组case,不超过120组,每组输入为一行小写英文字符a,b,c...y,z组成的字符串S
两组case之间由空行隔开(该空行不用处理)
字符串长度len <= 110000
 
Output
每一行一个整数x,对应一组case,表示该组case的字符串中所包含的最长回文长度.
 
Sample Input
aaaa

abab

 
Sample Output
4
3
 
Source

manacher算法:

定义数组p[i]表示以i为中心的(包含i这个字符)回文串半径长

将字符串s从前扫到后for(int i=0;i<strlen(s);++i)来计算p[i],则最大的p[i]就是最长回文串长度,则问题是如何去求p[i]?

由于s是从前扫到后的,所以需要计算p[i]时一定已经计算好了p[1]....p[i-1]

假设现在扫描到了i+k这个位置,现在需要计算p[i+k]

定义maxlen是i+k位置前所有回文串中能延伸到的最右端的位置,即maxlen=p[i]+i;//p[i]+i表示最大的

分两种情况:

1.i+k这个位置不在前面的任何回文串中,即i+k>maxlen,则初始化p[i+k]=1;//本身是回文串

然后p[i+k]左右延伸,即while(s[i+k+p[i+k]] == s[i+k-p[i+k]])++p[i+k]

2.i+k这个位置被前面以位置i为中心的回文串包含,即maxlen>i+k

这样的话p[i+k]就不是从1开始

由于回文串的性质,可知i+k这个位置关于i与i-k对称,

所以p[i+k]分为以下3种情况得出

//黑色是i的回文串范围,蓝色是i-k的回文串范围,

 #include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <cmath>
#include <iostream>
#include <algorithm>
#include <queue>
using namespace std;
char ss[],xx[];
int len[];
int main(void)
{
while(scanf("%s",ss) != -)
{
int l = (int)strlen(ss);
for(int i = l; i >= ; i--)
{
xx[i*+] = ss[i];
xx[i*+] = '#';
}
xx[] = ''; memset(len,,sizeof(len));
int id = ,maxlen = ;
for(int i = ; i < * l; i++)
{
if(len[id] + id > i)
len[i] = min(len[*id - i],len[id] + id - i);
else
len[i] = ;
while(xx[i+len[i]] == xx[ i - len[i] ]) len[i]++;
if(len[id]+id < len[i]+i)
id = i ;
maxlen = max(maxlen,len[i]);
}
printf("%d\n",maxlen-);
}
return ;
}

hdu 3068 最长回文(manacher入门)的更多相关文章

  1. hdu 3068 最长回文 manacher算法(视频)

    感悟: 首先我要Orz一下qsc,我在网上很难找到关于acm的教学视频,但偶然发现了这个,感觉做的很好,链接:戳戳戳 感觉这种花费自己时间去教别人的人真的很伟大. manacher算法把所有的回文都变 ...

  2. hdu 3068 最长回文 manacher

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3068 给出一个只由小写英文字符a,b,c...y,z组成的字符串S,求S中最长回文串的长度.回文就是正 ...

  3. hdu 3068 最长回文(manacher&amp;最长回文子串)

    最长回文 Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submi ...

  4. HDU - 3068 最长回文manacher马拉车算法

    # a # b # b # a # 当我们遇到回判断最长回文字符串问题的时候,若果用暴力的方法来做,就是在字符串中间添加 #,然后遍历每一个字符,找到最长的回文字符串.那么马拉车算法就是在这个基础上进 ...

  5. HDU 3068 最长回文 manacher 算法,基本上是O(n)复杂度

    下面有别人的比较详细的解题报告: http://wenku.baidu.com/view/3031d2d3360cba1aa811da42.html 下面贴我的代码,注释在代码中: #include ...

  6. HDU 3068 最长回文 Manacher算法

    Manacher算法是个解决Palindrome问题的O(n)算法,能够说是个超级算法了,秒杀其它一切Palindrome解决方式,包含复杂的后缀数组. 网上非常多解释,最好的解析文章当然是Leetc ...

  7. HDU - 3068 最长回文(manacher)

    HDU - 3068 最长回文 Time Limit: 2000MS   Memory Limit: 32768KB   64bit IO Format: %I64d & %I64u Subm ...

  8. hdu 3068 最长回文(manachar求最长回文子串)

    题目连接:hdu 3068 最长回文 解题思路:通过manachar算法求最长回文子串,如果用遍历的话绝对超时. #include <stdio.h> #include <strin ...

  9. hdu 3068 最长回文 (Manacher算法求最长回文串)

    参考博客:Manacher算法--O(n)回文子串算法 - xuanflyer - 博客频道 - CSDN.NET 从队友那里听来的一个算法,O(N)求得每个中心延伸的回文长度.这个算法好像比较偏门, ...

随机推荐

  1. SDOI2019 R2退役记

    还是退役了呀 Day -1 早上loli发了套题结果啥都不会 之后胡爷爷就秒了道数据结构 不过也没什么人做,于是全机房都在愉快的划水 下午来机房打了场luogu的\(rated\)赛,还是啥都不会 之 ...

  2. 让html里的js脚本延迟5秒运行

    setTimeout( function(){ //add your code}, 5 * 1000 );//延迟5000毫米

  3. 懒散惯了,该收收心了,两天了,封装了一个R0下注册表类

    写得乱七八糟.   看着自己写的代码,感觉都不像自己了.   我写的代码,风格这么差了么?思路这么乱了么?   我写代码这么累么?   不像以前的我了...   这段时间,太懒散了...   该继续努 ...

  4. 【转载:java】详解java中的注解(Annotation)

    目录结构: contents structure [+] 什么是注解 为什么要使用注解 基本语法 4种基本元注解 重复注解 使用注解 运行时处理的注解 编译时处理的注解 1.什么是注解 用一个词就可以 ...

  5. Python3读取深度学习CIFAR-10数据集出现的若干问题解决

    今天在看网上的视频学习深度学习的时候,用到了CIFAR-10数据集.当我兴高采烈的运行代码时,却发现了一些错误: # -*- coding: utf-8 -*- import pickle as p ...

  6. [转]一分钟明白 VS manifest 原理

    什么是vs 程序的manifest文件 manifest 是VS程序用来标明所依赖的side-by-side组建,如ATL, CRT等的清单. 为什么要有manifest文件 一台pc上,用一组建往往 ...

  7. java文件配置MySQL

    MybatisConfig.java文件 import com.alibaba.druid.pool.DruidDataSource; import com.xman.common.mybatis.S ...

  8. 进一步封装poco下的mysql操作

    为方便程序对mysql操作,我对poco的mysql进行了再次封装,主要是针对自己应用需要的部分. 开发工具:netbean 系统环境:centos7 poco版本: poco-1.9.0-all 主 ...

  9. Python - 集合与元素之数据类型和变量总结

    变量 变量的作用:保存状态(程序的运行本质是一系列的变化,变量的目的就是用来保存状态,变量值的变化就构成了程序运行的不同结果.) 例如:cs枪战中,一个人的生命可以表示为life = True 表示存 ...

  10. 开发者说 | 分布式事务中间件 Seata 的设计原理

    导读 微服务架构体系下,我们可以按照业务模块分层设计,单独部署,减轻了服务部署压力,也解耦了业务的耦合,避免了应用逐渐变成一个庞然怪物,从而可以轻松扩展,在某些服务出现故障时也不会影响其它服务的正常运 ...