二阶偏导数矩阵也就所谓的赫氏矩阵(Hessian matrix). 
一元函数就是二阶导,多元函数就是二阶偏导组成的矩阵. 
求向量函数最小值时用的,矩阵正定是最小值存在的充分条件。 
经济学中常常遇到求最优的问题,目标函数是多元非线性函数的极值问题尚无一般的求解方法,但判定局部极小值的方法是有的,就是用hessian矩阵, 
在x0点上,hessian矩阵是负定的,且各分量的一阶偏导数为0,则x0为极大值点. 
在x0点上,hessian矩阵是正定的,且各分量的一阶偏导数为0,则x0为极小值点. 
矩阵是负定的充要条件是各个特征值均为负数. 
矩阵是正定的充要条件是各个特征值均为正数.

设n多元实函数 在点的邻域内有二阶连续偏导,若有:

则:

当A正定矩阵时, 处是极小值

当A负定矩阵时,处是极大值

当A不定矩阵时, 不是极值点

当A为半正定矩阵或半负定矩阵时,是“可疑”极值点,尚需要利用其他方法来判定。

2), 最优化

在最优化的问题中, 线性最优化至少可以使用单纯形法(或称不动点算法)求解, 但对于非线性优化问题, 牛顿法提供了一种求解的办法. 假设任务是优化一个目标函数ff, 求函数ff的极大极小问题, 可以转化为求解函数ff的导数f′=0f′=0的问题, 这样求可以把优化问题看成方程求解问题(f′=0f′=0). 剩下的问题就和第一部分提到的牛顿法求解很相似了.

这次为了求解f′=0f′=0的根, 把f(x)f(x)的泰勒展开, 展开到2阶形式:

Hession矩阵(整理)的更多相关文章

  1. Hession矩阵与牛顿迭代法

    1.求解方程. 并不是所有的方程都有求根公式,或者求根公式很复杂,导致求解困难.利用牛顿法,可以迭代求解. 原理是利用泰勒公式,在x0处展开,且展开到一阶,即f(x) = f(x0)+(x-x0)f' ...

  2. hession矩阵的计算与在图像中的应用

    参考的一篇博客,文章地址:https://blog.csdn.net/lwzkiller/article/details/55050275 Hessian Matrix,它有着广泛的应用,如在牛顿方法 ...

  3. 转载 Deep learning:一(基础知识_1)

    前言: 最近打算稍微系统的学习下deep learing的一些理论知识,打算采用Andrew Ng的网页教程UFLDL Tutorial,据说这个教程写得浅显易懂,也不太长.不过在这这之前还是复习下m ...

  4. Deep learning:一(基础知识_1)

    本文纯转载: 主要是想系统的跟tornadomeet的顺序走一遍deeplearning; 前言: 最近打算稍微系统的学习下deep learing的一些理论知识,打算采用Andrew Ng的网页教程 ...

  5. [UFLDL] Basic Concept

    博客内容取材于:http://www.cnblogs.com/tornadomeet/archive/2012/06/24/2560261.html 参考资料: UFLDL wiki UFLDL St ...

  6. MATLAB读取一张RGB图片转成YUV格式

    1.读入照片 控制输出的标志定义 clc;close all;clear YES = 1; NO = 0; %YES表示输出该文件,请用户配置 yuv444_out_txt = 1; yuv444_o ...

  7. Deep Learning 学习随记(三)Softmax regression

    讲义中的第四章,讲的是Softmax 回归.softmax回归是logistic回归的泛化版,先来回顾下logistic回归. logistic回归: 训练集为{(x(1),y(1)),...,(x( ...

  8. 逻辑回归:使用SGD(Stochastic Gradient Descent)进行大规模机器学习

    Mahout学习算法训练模型 mahout提供了许多分类算法,但许多被设计来处理非常大的数据集,因此可能会有点麻烦.另一方面,有些很容易上手,因为,虽然依然可扩展性,它们具有低开销小的数据集.这样一个 ...

  9. LDA(latent dirichlet allocation)

    1.LDA介绍 LDA假设生成一份文档的步骤如下: 模型表示: 单词w:词典的长度为v,则单词为长度为v的,只有一个分量是1,其他分量为0的向量         $(0,0,...,0,1,0,... ...

随机推荐

  1. js实现类选择器和name属性选择器

    jQuery的出现,大大的提升了我们操作dom的效率,使得我们的开发更上一层楼,如jQuery的选择器就是一个很强大的功能,它包含了类选择器.id选择器.属性选择器.元素选择器.层级选择器.内容筛选选 ...

  2. DWVA-关于反射型xss的漏洞详解<xss reflected>

    反射型xss low级别 代码如下: <?php header ("X-XSS-Protection: 0"); // Is there any input? if( arr ...

  3. 揭秘webpack plugin

    前言 Plugin(插件) 是 webpack 生态的的一个关键部分.它为社区提供了一种强大的方法来扩展 webpack 和开发 webpack 的编译过程.这篇文章将尝试探索 webpack plu ...

  4. Java同步与异步

    一.关键字: thread(线程).thread-safe(线程安全).intercurrent(并发的) synchronized(同步的).asynchronized(异步的). volatile ...

  5. kubernetes concepts -- Pod Overview

    This page provides an overview of Pod, the smallest deployable object in the Kubernetes object model ...

  6. 支撑京东小程序的开发框架 「Taro」

    Taro 简介 现在支持小程序的平台太多了,例如: 微信小程序 QQ小程序 支付宝小程序 百度小程序 字节跳动小程序 针对他们都各自开发一套的话开发成本就太高了. 如果写一套代码,就能开发出适配这么多 ...

  7. 解决android sdk无法更新 更新慢的问题

    使用不同平台开发android应用的时候都要先搭建开发环境. 这里介绍一下搭建开发环境过程中更新和下载android sdk的一种方法: 第一步:配置android sdk manager的代理服务, ...

  8. 根据指定路由生成URL |Generating a URL from a Specific Route | 在视图中生成输出URL|高级路由特性

    后面Length=5 是怎么出现的?

  9. [CCPC2019 ONLINE]H Fishing Master

    题意 http://acm.hdu.edu.cn/showproblem.php?pid=6709 思考 先考虑所有鱼的烹饪时间小于k的情况.将T从大到小排序后,煮一条鱼相当于将其时间补齐至k. 由于 ...

  10. 机器学习-浅谈神经网络和Keras的应用

    概述 神经网络是深度学习的基础,它在人工智能中有着非常广泛的应用,它既可以应用于咱们前面的章节所说的Linear Regression, classification等问题,它还广泛的应用于image ...