<题面>

卡常终究比不上算法的优化……

这是莫队的有点小坑的题,

首先不一定能想到,想到不一定打对,打对不一定打好。


首先你会发现,这个题的时限是很长的~

$n$和$m$也是很大的。

于是我们可以计算一个时间复杂度,顺便搞一个块长。

首先有$\Theta (M)$的询问,设块长为$L$,

于是左端点移动,不跨块,移动不超过$L$

右端点移动$N$

然后就有左面的总共移动$M \times L $

右面的移动$\frac{N}{L}\times N$这里应该就是说,每次要挪一个 $N$,而左端点只挪$\frac{N}{L}$次。

(转移一会再算)

这样莫队总复杂度:$\Theta(M \times L + \frac{N^2}{L})$

所以当块长为$\sqrt{\frac{N^2}{M}}=\frac{N}{\sqrt{M}}$时复杂度是最优的(基本不等式)

然后我们想转移,他让我们求一个区间数的个数。

那么,我们就可以用个数据结构,来维护$[a,b]$中数的个数和去重后的数个数

仔细算下,$\log N$的时间复杂度还能承受。

所以选择树状数组或是线段树(常数有点大,用zkw好一些(但是用线段树的A的很困难~))

维护权值。

这样就可以通过用树状数组前缀和或是线段树区间查询解决转移问题。

总复杂度:$\Theta(N\sqrt{M}\log N)$

跑得还好说。

(有人说分块也行,大家加油咯!)

#include <algorithm>
#include <iostream>
#include <cstring>
#include <cstdio>
#include <cmath>
#define N 101101
#define LL long long //#include "debug.h" using namespace std;
struct QUERY{
int l,r,a,b,t;
LL ans1,ans2;
}query[N*10];
int num[N];
int pre[N],n,qn,sqn;
int inpart[N];
int tot[N],pretot[N];
inline int lowbit (int x){ return x&(-x); }
inline int getpart(int x){ return (x-1)/sqn+1; }
LL sum (int x){
LL s=0;
for(int i=x;i;i-=lowbit(i)) s+=pre[i];
return s;
}
LL gettot (int x){
LL s=0;
for(int i=x;i;i-=lowbit(i)) s+=pretot[i];
return s;
}
void chatot (int pos,int x){
while(pos<=n){
pretot[pos]+=x;
pos+=lowbit(pos);
}
}
void change (int pos,int x){
if(tot[pos]==1&&x==-1)
chatot(pos,-1);
else if(tot[pos]==0&&x== 1)
chatot(pos,1);
tot[pos]+=x;
while(pos<=n){
pre[pos]+=x;
pos+=lowbit(pos);
}
}
//bool CMP (const QUERY &a,const QUERY &b){
// if(inpart[a.l]==inpart[b.r])
// return a.r<b.r;
// return a.l<a.l;
//}
bool CMP(const QUERY &x,const QUERY &y){
return inpart[x.l]<inpart[y.l]||(inpart[x.l]==inpart[y.l]&&(inpart[x.l]&1?x.r<y.r:x.r>y.r));
}
bool Cmp (const QUERY &a,const QUERY &b){
return a.t<b.t;
}
int main (){
int a,b,c,d;
scanf("%d%d",&n,&qn);sqn=sqrt(1ll*n*n/qn)+1;
for(int i=1;i<=n;i++){
scanf("%d",num+i);
inpart[i]=getpart(i);
}
for(int i=1;i<=qn;i++){
scanf("%d%d%d%d",&a,&b,&c,&d);
query[i].l=a,query[i].r=b,query[i].t=i;
query[i].a=c,query[i].b=d;
}
sort(query+1,query+qn+1,CMP);
//for(int i=1;i<=qn;i++)cout<<query[i].l<<" "<<query[i].r<<endl;
int l=1,r=1,ql,qr;
change(num[1],1);
for(int i=1;i<=qn;i++){//pour(tot,1,n,3,"Tot");
ql=query[i].l,qr=query[i].r,
a =query[i].a,b =query[i].b;
while(l<ql)change(num[l] ,-1),l++;
while(l>ql)change(num[l-1], 1),l--;
while(r<qr)change(num[r+1], 1),r++;
while(r>qr)change(num[r] ,-1),r--;
query[i].ans1=sum(b)-sum(a-1);
query[i].ans2=gettot(b)-gettot(a-1);
}
sort(query+1,query+qn+1,Cmp);
for(int i=1;i<=qn;i++)
printf("%lld %lld\n",query[i].ans1,query[i].ans2);
return 0;
}

作业-[luogu4396][AHOI2013]-莫队的更多相关文章

  1. 洛谷P4396 作业 [AHOI2013] 莫队

    正解:莫队 解题报告: 传送门! 天呐太久没做莫队了连板子都认不出来了,,,所以复健下做下莫队的题目QAQ 就很板子鸭,和莫队板子比好像只有一个离散化,,,?就不讲了QAQ 等下直接放代码QAQ ov ...

  2. 【Luogu4396】[AHOI2013]作业(莫队)

    [Luogu4396][AHOI2013]作业(莫队) 题面 洛谷 题解 模板题 #include<iostream> #include<cstdio> #include< ...

  3. Bzoj 3236: [Ahoi2013]作业 莫队,分块

    3236: [Ahoi2013]作业 Time Limit: 100 Sec  Memory Limit: 512 MBSubmit: 1113  Solved: 428[Submit][Status ...

  4. BZOJ 3236: [Ahoi2013]作业( 莫队 + BIT )

    莫队..用两个树状数组计算.时间复杂度应该是O(N1.5logN). 估计我是写残了...跑得很慢... ----------------------------------------------- ...

  5. BZOJ_3809_Gty的二逼妹子序列 && BZOJ_3236_[Ahoi2013]作业 _莫队+分块

    BZOJ_3809_Gty的二逼妹子序列 && BZOJ_3236_[Ahoi2013]作业 _莫队+分块 Description Autumn和Bakser又在研究Gty的妹子序列了 ...

  6. 【BZOJ3809/3236】Gty的二逼妹子序列 [Ahoi2013]作业 莫队算法+分块

    [BZOJ3809]Gty的二逼妹子序列 Description Autumn和Bakser又在研究Gty的妹子序列了!但他们遇到了一个难题. 对于一段妹子们,他们想让你帮忙求出这之内美丽度∈[a,b ...

  7. [AHOI2013]作业 (莫队+分块)

    [AHOI2013]作业 (莫队+分块) 题面 给定了一个长度为n的数列和若干个询问,每个询问是关于数列的区间[l,r],首先你要统计该区间内大于等于a,小于等于b的数的个数,其次是所有大于等于a,小 ...

  8. 【分块,莫队】【P4396】【AHOI2013】作业

    传送门 Description 此时己是凌晨两点,刚刚做了Codeforces的小A掏出了英语试卷.英语作业其实不算多,一个小时刚好可以做完.然后是一个小时可以做完的数学作业,接下来是分别都是一个小时 ...

  9. [AHOI2013]作业 & Gty的二逼妹子序列 莫队

    ---题面--- 题解: 题目要求统计一个区间内数值在[a, b]内的数的个数和种数,而这个是可以用树状数组统计出来的,所以可以考虑莫队. 考虑区间[l, r]转移到[l, r + 1],那么对于维护 ...

随机推荐

  1. php非法输入数据类型

    1.空白输入 2.超长输入(如大于256个字符) 3.特殊字符(如·!@#¥%……&*()—=|.:‘:<>;'"<>?.,) 4.控制字符(如\r\n等) ...

  2. struts2文件上传,文件类型 allowedTypes对应

    '.a' : 'application/octet-stream', 2 '.ai' : 'application/postscript', 3 '.aif' : 'audio/x-aiff', 4 ...

  3. 【珍惜时间】vuepro

    老规矩放上大大的github开源地址:https://github.com/goodheart222/vuepro 我们再来看看项目的效果,初步根据效果做到心中有数 看到效果的话,我们会发现,肯定是有 ...

  4. Android开发 设备横屏与竖屏的详解

    需要了解横竖屏切换关键知识 1.在Android设备的横竖屏幕,每一次切换横竖屏其实是在重新创建Activity,Activity会重新走一遍生命周期.从onCreate 到 onDestroy 2. ...

  5. Imageview 图片按比例缩放

    只需要在 布局文件中 加入 android:adjustViewBounds="true"这行代码即可 它会让图片进行等比例的拉伸展示

  6. 网站PC端和移动端,用户通过设备识别

    <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <!--<me ...

  7. MVVM test

    示例代码 public class RegisterUserViewModel { public UserInfo userInfo { get; set; } public ICommand Cli ...

  8. python+selenium中webdriver相关资源

    Chrome chrome的webdriver :  http://chromedriver.storage.googleapis.com/index.html chrome的webdriver需要对 ...

  9. 18多校8th

    a-容斥原理(带限制的不定方程) #include<bits/stdc++.h> using namespace std; #define mod 998244353 #define ll ...

  10. CF148D Bag of mice (期望dp)

    传送门 # 解题思路 ​    ~~这怕是本蒟蒻第一个独立做出来的期望$dp$的题,发篇题解庆祝一下~~.首先,应该是能比较自然的想出状态设计$f[i][j][0/1]$ 表示当前还剩 $i$个白老鼠 ...