传送门

解题思路

首先我们发现这道题s的长度很小,所以考虑点暴力的做法,状压dp或搜索。本蒟蒻搜索永远调不对,所以就写了个状压dp。因为所有s里的数都要出现一次,并且最后的答案是要求整除,那么我们设dp[S][k]表示现在所选的状态集合为S,当前所选的数组成的数字对d取余后的值为k,这样就可以转移了。首先枚举所有的状态S,然后再枚举所有没有被选的数j,再枚举余数k即可转移。 转移方程为:dp[S|(1<<(j-1))][(k*10+a[j])%d]+=dp[S][k];但是这样写是错误的,因为没有考虑重复的排列,比如说s为"001",结果发现“010”这个状态会被算两次。。看到有大佬直接用数学方法去重orz,本蒟蒻不太会,就记了个临时数组b[i],表示当前要填的数字i有没有被填过,这样就可以避免一个位置放相同元素的情况了,具体看代码。时间复杂度为O(T*len*d*(2^len))

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath> using namespace std;
const int MAXN = ; int T,d,a[MAXN],cnt,dp[<<MAXN][];
bool b[MAXN];
char s[MAXN]; int main(){
scanf("%d",&T);int len;
while(T--){
memset(dp,,sizeof(dp));
scanf("%s%d",s+,&d);
len=strlen(s+);cnt=;
for(register int i=;i<=len;i++) a[i]=s[i]-'';
dp[][]=;
for(register int S=;S<(<<len)-;S++){
memset(b,,sizeof(b));
for(register int j=;j<=len;j++)if(!(S&(<<(j-))) && !b[a[j]]){
b[a[j]]=;
for(register int k=;k<d;k++)
dp[S|(<<(j-))][(k*+a[j])%d]+=dp[S][k];
}
}
printf("%d\n",dp[(<<len)-][]);
}
return ;
}

LUOGU P4163 [SCOI2007]排列的更多相关文章

  1. P4163 [SCOI2007]排列——next_permutation

    P4163 [SCOI2007]排列 注意要排序: next_permutation prev_permutation #include<cstdio> #include<cstri ...

  2. 暑假集训Day 4 P4163 [SCOI2007]排列 (状压dp)

    状压dp (看到s的长度不超过10就很容易想到是状压dp了 但是这个题的状态转移方程比较特殊) 题目大意 给一个数字串 s 和正整数 d, 统计 s 有多少种不同的排列能被 d 整除(可以有前导 0) ...

  3. BZOJ 1072: [SCOI2007]排列perm 状态压缩DP

    1072: [SCOI2007]排列perm Description 给一个数字串s和正整数d, 统计s有多少种不同的排列能被d整除(可以有前导0).例如123434有90种排列能被2整除,其中末位为 ...

  4. SCOI2007排列perm

    1072: [SCOI2007]排列perm Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 805  Solved: 497[Submit][Stat ...

  5. BZOJ 1072 [SCOI2007]排列perm

    1072: [SCOI2007]排列perm Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1268  Solved: 782[Submit][Sta ...

  6. [BZOJ1072][SCOI2007]排列perm 状压dp

    1072: [SCOI2007]排列perm Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2488  Solved: 1546[Submit][St ...

  7. [BZOJ1072][SCOI2007] 排列prem

    Description 给一个数字串s和正整数d, 统计s有多少种不同的排列能被d整除(可以有前导0).例如123434有90种排列能被2整除,其中末位为2的有30种,末位为4的有60种. Input ...

  8. 1072: [SCOI2007]排列perm - BZOJ

    Description 给一个数字串s和正整数d, 统计s有多少种不同的排列能被d整除(可以有前导0).例如123434有90种排列能被2整除,其中末位为2的有30种,末位为4的有60种.Input ...

  9. [BZOJ 1072] [SCOI2007] 排列perm 【状压DP】

    题目链接:BZOJ 1072 这道题使用 C++ STL 的 next_permutation() 函数直接暴力就可以AC .(使用 Set 判断是否重复) 代码如下: #include <io ...

随机推荐

  1. ActiveMQ 反序列化漏洞(CVE-2015-5254)

    java -jar jmet-0.1.0-all.jar -Q event -I ActiveMQ -s -Y "touch /tmp/success" -Yp ROME 192. ...

  2. 自动化测试工具1-testcomplete

    TestComplete是SmartBear公司开发的一套支持自动测试软件的工具.在当今的软件开发中,自动测试非常重要,大型软件开发公司很久以来就已经将其作为软件开发的一项重要环节.然而,自动测试软件 ...

  3. hbase 集群搭建(公司内部测试集群)

    我用的是cdh4.5版本:配置文件:$HBASE_HOME/conf/hbase-env.shexport JAVA_HOME=$JAVA_HOMEexport JAVA_HOME=/home/had ...

  4. HTML_表单标签

    <!DOCTYPE html><html lang="en"><head> <meta charset="UTF-8" ...

  5. java——有1、2、3、4个数字,能组成多少个互不相同且无重复数字的三位数?都是多少?

    package java_day10; /* * 有1.2.3.4个数字,能组成多少个互不相同且无重复数字的三位数?都是多少? */ public class Demo04 { public stat ...

  6. Python连接数据库流行用到的第三方库

    Python连接数据库流行用到的第三方库: mysqldb:只支持Python2.x mysqlclient : mysqldb的衍生版本,完全兼容mysqldb,同时支持Python3.x,安装较复 ...

  7. openwrt MySQL移植

    1 选择包 选择两个包,拷贝配置文件 cp products/mt7621/config_6080 .config 编译固件 openwrt 百万数据的优化, 执行脚本: mysql -u root ...

  8. CF421D Bug in Code

    题意:n个人每人选择了另外不相同的两个人.问有多少对(x,y)使得这n个人中至少有p个选择了至少其中之一? 标程:那就不写了吧. 题解:容斥 统计Ax表示有多少个人选择了x. 一般来说有Ax+Ay&g ...

  9. Redhat镜像-RHEL-官方镜像下载大全

    原网站内容链接:https://pan.baidu.com/s/12XYXh#list/path=%2F 已经存在自己的云盘上了

  10. C++调用python(C++)

    C++源代码:python部分就是正常的python代码 #include <string.h> #include <math.h> #include "iostre ...