POJ3237 Tree 树链剖分 边权

传送门:http://poj.org/problem?id=3237

题意:

n个点的,n-1条边

修改单边边权

将a->b的边权取反

查询a->b边权最大值

题解:

修改边权就查询点的深度大的点,用大的点去存这条边的边权,其余的就和点权的是一样的了

取反操作用线段树维护,区间最大值取反就是区间最小值,区间最小值取反就是区间最大值

所以维护两颗线段树即可,lazy标记表示覆盖单边的边权

代码:

#include <set>
#include <map>
#include <cmath>
#include <cstdio>
#include <string>
#include <vector>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
typedef long long LL;
typedef pair<int, int> pii;
typedef unsigned long long uLL;
#define ls rt<<1
#define rs rt<<1|1
#define lson l,mid,rt<<1
#define rson mid+1,r,rt<<1|1
#define bug printf("*********\n")
#define FIN freopen("input.txt","r",stdin);
#define FON freopen("output.txt","w+",stdout);
#define IO ios::sync_with_stdio(false),cin.tie(0)
#define debug1(x) cout<<"["<<#x<<" "<<(x)<<"]\n"
#define debug2(x,y) cout<<"["<<#x<<" "<<(x)<<" "<<#y<<" "<<(y)<<"]\n"
#define debug3(x,y,z) cout<<"["<<#x<<" "<<(x)<<" "<<#y<<" "<<(y)<<" "<<#z<<" "<<z<<"]\n"
const int maxn = 1e5 + 5;
const int INF = 0x3f3f3f3f;
struct EDGE {
int v, nxt, w;
} edge[maxn << 1];
int head[maxn], tot;
void add_edge(int u, int v, int w) {
edge[tot].v = v;
edge[tot].w = w;
edge[tot].nxt = head[u];
head[u] = tot++;
}
int sz[maxn], dep[maxn], son[maxn], id[maxn], Rank[maxn], cnt, fa[maxn], top[maxn];
int d[maxn];
void dfs1(int u, int f, int cnt) {
fa[u] = f;
dep[u] = cnt;
sz[u] = 1;
son[u] = 0;
int tmp = 0;
for(int i = head[u]; i != -1; i = edge[i].nxt) {
int v = edge[i].v;
if(v != f) {
dfs1(v, u, cnt + 1);
if(tmp < sz[v]) {
son[u] = v;
tmp = sz[v];
}
sz[u] += sz[v];
} }
}
void dfs2(int u, int tp) {
top[u] = tp;
id[u] = ++cnt;
Rank[cnt] = u;
if(son[u]) dfs2(son[u], tp);
for(int i = head[u]; i != -1; i = edge[i].nxt) {
int v = edge[i].v;
if(v == fa[u]) continue;
if(v == son[u]) {
d[id[v]] = edge[i].w;
continue;
}
dfs2(v, v);
d[id[v]] = edge[i].w;
}
}
void prebuild() {
dfs1(1, 0, 0);
dfs2(1, 1);
} int Max[maxn << 2];
int Min[maxn << 2];
// int sum[maxn<<2];
int lazy[maxn]; void push_up(int rt) {
Max[rt] = max(Max[ls], Max[rs]);
Min[rt] = min(Min[ls], Min[rs]); }
void build(int l, int r, int rt) {
lazy[rt] = 1;
if(l == r) {
Max[rt] = Min[rt] = d[l];
return;
}
int mid = (l + r) >> 1;
build(lson);
build(rson);
push_up(rt);
}
void push_down(int rt) {
if(lazy[rt] == -1) {
lazy[ls] = -lazy[ls];
lazy[rs] = -lazy[rs];
lazy[rt] = 1;
swap(Max[ls], Min[ls]);
Max[ls] *= -1;
Min[ls] *= -1;
swap(Max[rs], Min[rs]);
Max[rs] *= -1;
Min[rs] *= -1;
}
}
void update_pos(int pos, int val, int l, int r, int rt) {
if(l == r) {
lazy[rt] = 1;
Max[rt] = Min[rt] = val;
return;
}
push_down(rt);
int mid = (l + r) >> 1;
if(pos <= mid) update_pos(pos, val, lson);
else update_pos(pos, val, rson);
push_up(rt);
}
void update(int L, int R, int l, int r, int rt) {
if(L <= l && r <= R) {
lazy[rt] = -lazy[rt];
swap(Max[rt], Min[rt]);
Max[rt] *= -1;
Min[rt] *= -1;
return;
}
push_down(rt);
int mid = (l + r) >> 1;
if(L <= mid) update(L, R, lson);
if(R > mid) update(L, R, rson);
push_up(rt);
}
int query(int L, int R, int l, int r, int rt) {
if(L <= l && r <= R) {
return Max[rt];
}
push_down(rt);
int mid = (l + r) >> 1;
int ans = -INF;
if(L <= mid) ans = max(ans, query(L, R, lson));
if(R > mid) ans = max(ans, query(L, R, rson));
return ans;
}
void change(int u, int v) {
while(top[u] != top[v]) {
if(dep[top[u]] < dep[top[v]]) {
swap(u, v);
}
update(id[top[u]], id[u], 1, cnt, 1);
u = fa[top[u]];
}
if(u != v) {
if(dep[u] > dep[v]) swap(u, v);
update(id[son[u]], id[v], 1, cnt, 1);
}
}
void Query(int u, int v) {
int ans = -INF;
while(top[u] != top[v]) {
if(dep[top[u]] < dep[top[v]]) {
swap(u, v);
}
ans = max(ans, query(id[top[u]], id[u], 1, cnt, 1));
u = fa[top[u]];
}
if(u != v) {
if(dep[u] > dep[v]) swap(u, v);
ans = max(ans, query(id[son[u]], id[v], 1, cnt, 1));
}
printf("%d\n", ans);
}
int u[maxn], v[maxn], c[maxn]; int main() {
#ifndef ONLINE_JUDGE
FIN
#endif
int n, T;
scanf("%d", &T);
while(T--) {
scanf("%d", &n);
memset(head, -1, sizeof(head));
tot = cnt = 0;
for(int i = 1; i < n; i++) {
scanf("%d%d%d", &u[i], &v[i], &c[i]); //要用数组保存
add_edge(u[i], v[i], c[i]);
add_edge(v[i], u[i], c[i]);
}
prebuild();
build(1, cnt, 1);
char op[20];
int a, b;
while(1) {
scanf("%s", op);
if(op[0] == 'D') break;
scanf("%d%d", &a, &b);
if(op[0] == 'C') {
int tmp = dep[u[a]] > dep[v[a]] ? u[a] : v[a]; //找出深度大的那个点
update_pos(id[tmp], b, 1, cnt, 1); //更新进入深度大的点那条边
} else if(op[0] == 'N') change(a, b);
else if(op[0] == 'Q') Query(a, b);
}
}
return 0; }

POJ3237 Tree 树链剖分 边权的更多相关文章

  1. POJ3237 Tree 树链剖分 线段树

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - POJ3237 题意概括 Description 给你由N个结点组成的树.树的节点被编号为1到N,边被编号为1 ...

  2. POJ 3237.Tree -树链剖分(边权)(边值更新、路径边权最值、区间标记)贴个板子备忘

    Tree Time Limit: 5000MS   Memory Limit: 131072K Total Submissions: 12247   Accepted: 3151 Descriptio ...

  3. 计蒜客 38229.Distance on the tree-1.树链剖分(边权)+可持久化线段树(区间小于等于k的数的个数)+离散化+离线处理 or 2.树上第k大(主席树)+二分+离散化+在线查询 (The Preliminary Contest for ICPC China Nanchang National Invitational 南昌邀请赛网络赛)

    Distance on the tree DSM(Data Structure Master) once learned about tree when he was preparing for NO ...

  4. BZOJ 1036 [ZJOI2008]树的统计Count (树链剖分 - 点权剖分 - 单点权修改)

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1036 树链剖分模版题,打的时候注意点就行.做这题的时候,真的傻了,单词拼错检查了一个多小时 ...

  5. Hdu 5274 Dylans loves tree (树链剖分模板)

    Hdu 5274 Dylans loves tree (树链剖分模板) 题目传送门 #include <queue> #include <cmath> #include < ...

  6. POJ2763 Housewife Wind 树链剖分 边权

    POJ2763 Housewife Wind 树链剖分 边权 传送门:http://poj.org/problem?id=2763 题意: n个点的,n-1条边,有边权 修改单边边权 询问 输出 当前 ...

  7. HDU3669 Aragorn's Story 树链剖分 点权

    HDU3669 Aragorn's Story 树链剖分 点权 传送门:http://acm.hdu.edu.cn/showproblem.php?pid=3966 题意: n个点的,m条边,每个点都 ...

  8. poj3237树链剖分边权+区间取负

    树链剖分+线段树lazy-tag在树链上操作时千万不要写错.. /* 树链剖分+线段树区间变负 */ #include<iostream> #include<cstring> ...

  9. Query on a tree——树链剖分整理

    树链剖分整理 树链剖分就是把树拆成一系列链,然后用数据结构对链进行维护. 通常的剖分方法是轻重链剖分,所谓轻重链就是对于节点u的所有子结点v,size[v]最大的v与u的边是重边,其它边是轻边,其中s ...

随机推荐

  1. VS2017 打包成exe

    在项目的解决方案 右键→ 新建项目  后出现如下选择 (如果没有找到,请在联机中搜索  visual studio installer 并安装) 选择项目类型 Setup Project,并输入名称, ...

  2. Vagrant-安装教程及常见问题

    http://ju.outofmemory.cn/entry/346215 前言: Vagrant是一个基于Ruby的工具,用于创建和部署虚拟化开发环境. 它的主要意义是让所有开发人员都使用和线上服务 ...

  3. Oracle日期

    oracle 日期格式 to_date("要转换的字符串","转换的格式")   两个参数的格式必须匹配,否则会报错. 即按照第二个参数的格式解释第一个参数. ...

  4. Linux使用及命令

    #命令模式下输入:光标移动到第34行第15个字符 <Enter>15l(这是小写的L) ctrl+u删除光标前面的字符 ctrl+j删除光标后面的字符 在Linux下用VIM打开大小几个G ...

  5. 国内 PHP Composer 镜像列表(2019-07-07)

    目录 国内 PHP Composer 镜像列表 Composer 是什么? 镜像列表 配置镜像 本文历史 参考 国内 PHP Composer 镜像列表 Composer 是什么? Composer ...

  6. git操作——TortoiseGit指定某个分支clone

    需求 需要使用TortoiseGit 克隆某个项目分支 操作 勾选分支,输入分支名称clone代码即可

  7. 【Leetcode链表】环形链表 II(142)

    题目 给定一个链表,返回链表开始入环的第一个节点. 如果链表无环,则返回 null. 为了表示给定链表中的环,我们使用整数 pos 来表示链表尾连接到链表中的位置(索引从 0 开始). 如果 pos ...

  8. MySQL5.7默认打开ONLY_FULL_GROUP_BY模式问题与解决方案

    MySQL5.7后将sql_mode的ONLY_FULL_GROUP_BY模式默认设置为打开状态,这样一来,很多之前的sql语句可能会出现错误,错误信息如下: Error Code: 1055. Ex ...

  9. 初识block

    我们可以把Block当做Objective-C的匿名函数.Block允许开发者在两个对象之间将任意的语句当做数据进行传递,往往这要比引用定义在别处的函数直观.另外,block的实现具有封闭性(clos ...

  10. Android 错误:IllegalStateException: Can not perform this action after onSaveInstanceState

    今天做Fragment切换.状态保存功能的时候,出现了这个错误: E/AndroidRuntime(12747): Caused by: java.lang.IllegalStateException ...