POJ3237 Tree 树链剖分 边权

传送门:http://poj.org/problem?id=3237

题意:

n个点的,n-1条边

修改单边边权

将a->b的边权取反

查询a->b边权最大值

题解:

修改边权就查询点的深度大的点,用大的点去存这条边的边权,其余的就和点权的是一样的了

取反操作用线段树维护,区间最大值取反就是区间最小值,区间最小值取反就是区间最大值

所以维护两颗线段树即可,lazy标记表示覆盖单边的边权

代码:

#include <set>
#include <map>
#include <cmath>
#include <cstdio>
#include <string>
#include <vector>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
typedef long long LL;
typedef pair<int, int> pii;
typedef unsigned long long uLL;
#define ls rt<<1
#define rs rt<<1|1
#define lson l,mid,rt<<1
#define rson mid+1,r,rt<<1|1
#define bug printf("*********\n")
#define FIN freopen("input.txt","r",stdin);
#define FON freopen("output.txt","w+",stdout);
#define IO ios::sync_with_stdio(false),cin.tie(0)
#define debug1(x) cout<<"["<<#x<<" "<<(x)<<"]\n"
#define debug2(x,y) cout<<"["<<#x<<" "<<(x)<<" "<<#y<<" "<<(y)<<"]\n"
#define debug3(x,y,z) cout<<"["<<#x<<" "<<(x)<<" "<<#y<<" "<<(y)<<" "<<#z<<" "<<z<<"]\n"
const int maxn = 1e5 + 5;
const int INF = 0x3f3f3f3f;
struct EDGE {
int v, nxt, w;
} edge[maxn << 1];
int head[maxn], tot;
void add_edge(int u, int v, int w) {
edge[tot].v = v;
edge[tot].w = w;
edge[tot].nxt = head[u];
head[u] = tot++;
}
int sz[maxn], dep[maxn], son[maxn], id[maxn], Rank[maxn], cnt, fa[maxn], top[maxn];
int d[maxn];
void dfs1(int u, int f, int cnt) {
fa[u] = f;
dep[u] = cnt;
sz[u] = 1;
son[u] = 0;
int tmp = 0;
for(int i = head[u]; i != -1; i = edge[i].nxt) {
int v = edge[i].v;
if(v != f) {
dfs1(v, u, cnt + 1);
if(tmp < sz[v]) {
son[u] = v;
tmp = sz[v];
}
sz[u] += sz[v];
} }
}
void dfs2(int u, int tp) {
top[u] = tp;
id[u] = ++cnt;
Rank[cnt] = u;
if(son[u]) dfs2(son[u], tp);
for(int i = head[u]; i != -1; i = edge[i].nxt) {
int v = edge[i].v;
if(v == fa[u]) continue;
if(v == son[u]) {
d[id[v]] = edge[i].w;
continue;
}
dfs2(v, v);
d[id[v]] = edge[i].w;
}
}
void prebuild() {
dfs1(1, 0, 0);
dfs2(1, 1);
} int Max[maxn << 2];
int Min[maxn << 2];
// int sum[maxn<<2];
int lazy[maxn]; void push_up(int rt) {
Max[rt] = max(Max[ls], Max[rs]);
Min[rt] = min(Min[ls], Min[rs]); }
void build(int l, int r, int rt) {
lazy[rt] = 1;
if(l == r) {
Max[rt] = Min[rt] = d[l];
return;
}
int mid = (l + r) >> 1;
build(lson);
build(rson);
push_up(rt);
}
void push_down(int rt) {
if(lazy[rt] == -1) {
lazy[ls] = -lazy[ls];
lazy[rs] = -lazy[rs];
lazy[rt] = 1;
swap(Max[ls], Min[ls]);
Max[ls] *= -1;
Min[ls] *= -1;
swap(Max[rs], Min[rs]);
Max[rs] *= -1;
Min[rs] *= -1;
}
}
void update_pos(int pos, int val, int l, int r, int rt) {
if(l == r) {
lazy[rt] = 1;
Max[rt] = Min[rt] = val;
return;
}
push_down(rt);
int mid = (l + r) >> 1;
if(pos <= mid) update_pos(pos, val, lson);
else update_pos(pos, val, rson);
push_up(rt);
}
void update(int L, int R, int l, int r, int rt) {
if(L <= l && r <= R) {
lazy[rt] = -lazy[rt];
swap(Max[rt], Min[rt]);
Max[rt] *= -1;
Min[rt] *= -1;
return;
}
push_down(rt);
int mid = (l + r) >> 1;
if(L <= mid) update(L, R, lson);
if(R > mid) update(L, R, rson);
push_up(rt);
}
int query(int L, int R, int l, int r, int rt) {
if(L <= l && r <= R) {
return Max[rt];
}
push_down(rt);
int mid = (l + r) >> 1;
int ans = -INF;
if(L <= mid) ans = max(ans, query(L, R, lson));
if(R > mid) ans = max(ans, query(L, R, rson));
return ans;
}
void change(int u, int v) {
while(top[u] != top[v]) {
if(dep[top[u]] < dep[top[v]]) {
swap(u, v);
}
update(id[top[u]], id[u], 1, cnt, 1);
u = fa[top[u]];
}
if(u != v) {
if(dep[u] > dep[v]) swap(u, v);
update(id[son[u]], id[v], 1, cnt, 1);
}
}
void Query(int u, int v) {
int ans = -INF;
while(top[u] != top[v]) {
if(dep[top[u]] < dep[top[v]]) {
swap(u, v);
}
ans = max(ans, query(id[top[u]], id[u], 1, cnt, 1));
u = fa[top[u]];
}
if(u != v) {
if(dep[u] > dep[v]) swap(u, v);
ans = max(ans, query(id[son[u]], id[v], 1, cnt, 1));
}
printf("%d\n", ans);
}
int u[maxn], v[maxn], c[maxn]; int main() {
#ifndef ONLINE_JUDGE
FIN
#endif
int n, T;
scanf("%d", &T);
while(T--) {
scanf("%d", &n);
memset(head, -1, sizeof(head));
tot = cnt = 0;
for(int i = 1; i < n; i++) {
scanf("%d%d%d", &u[i], &v[i], &c[i]); //要用数组保存
add_edge(u[i], v[i], c[i]);
add_edge(v[i], u[i], c[i]);
}
prebuild();
build(1, cnt, 1);
char op[20];
int a, b;
while(1) {
scanf("%s", op);
if(op[0] == 'D') break;
scanf("%d%d", &a, &b);
if(op[0] == 'C') {
int tmp = dep[u[a]] > dep[v[a]] ? u[a] : v[a]; //找出深度大的那个点
update_pos(id[tmp], b, 1, cnt, 1); //更新进入深度大的点那条边
} else if(op[0] == 'N') change(a, b);
else if(op[0] == 'Q') Query(a, b);
}
}
return 0; }

POJ3237 Tree 树链剖分 边权的更多相关文章

  1. POJ3237 Tree 树链剖分 线段树

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - POJ3237 题意概括 Description 给你由N个结点组成的树.树的节点被编号为1到N,边被编号为1 ...

  2. POJ 3237.Tree -树链剖分(边权)(边值更新、路径边权最值、区间标记)贴个板子备忘

    Tree Time Limit: 5000MS   Memory Limit: 131072K Total Submissions: 12247   Accepted: 3151 Descriptio ...

  3. 计蒜客 38229.Distance on the tree-1.树链剖分(边权)+可持久化线段树(区间小于等于k的数的个数)+离散化+离线处理 or 2.树上第k大(主席树)+二分+离散化+在线查询 (The Preliminary Contest for ICPC China Nanchang National Invitational 南昌邀请赛网络赛)

    Distance on the tree DSM(Data Structure Master) once learned about tree when he was preparing for NO ...

  4. BZOJ 1036 [ZJOI2008]树的统计Count (树链剖分 - 点权剖分 - 单点权修改)

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1036 树链剖分模版题,打的时候注意点就行.做这题的时候,真的傻了,单词拼错检查了一个多小时 ...

  5. Hdu 5274 Dylans loves tree (树链剖分模板)

    Hdu 5274 Dylans loves tree (树链剖分模板) 题目传送门 #include <queue> #include <cmath> #include < ...

  6. POJ2763 Housewife Wind 树链剖分 边权

    POJ2763 Housewife Wind 树链剖分 边权 传送门:http://poj.org/problem?id=2763 题意: n个点的,n-1条边,有边权 修改单边边权 询问 输出 当前 ...

  7. HDU3669 Aragorn's Story 树链剖分 点权

    HDU3669 Aragorn's Story 树链剖分 点权 传送门:http://acm.hdu.edu.cn/showproblem.php?pid=3966 题意: n个点的,m条边,每个点都 ...

  8. poj3237树链剖分边权+区间取负

    树链剖分+线段树lazy-tag在树链上操作时千万不要写错.. /* 树链剖分+线段树区间变负 */ #include<iostream> #include<cstring> ...

  9. Query on a tree——树链剖分整理

    树链剖分整理 树链剖分就是把树拆成一系列链,然后用数据结构对链进行维护. 通常的剖分方法是轻重链剖分,所谓轻重链就是对于节点u的所有子结点v,size[v]最大的v与u的边是重边,其它边是轻边,其中s ...

随机推荐

  1. python 常见包中的不定参数

  2. COGS-2638 区间与,异或,询问max

    本篇题解参考了这个博客 题目链接 我们利用线段树来维护区间第最大值,考虑如何修改 每一次进行与操作时只有z的二进制为0的位会产生影响 每一次进行或操作时只有z的二进制为1的位会产生影响 所以只要该区间 ...

  3. MaxCompute SQL 使用正则表达式选列

    编辑MaxCompute SQL 时,经常会需要在某个表N个列中指定一些列.若需要指定的列比较少,编写SQL时一个个输入既可.当遇到列多的时候,一个个输入就会非常费劲.本文将介绍如何在编写MaxCom ...

  4. Codeforces 662D International Olympiad【贪心】

    比赛的时候后缀长度在4位以内的时候分类讨论了一下,其实他们完全是一个套路的..并不需要讨论. 然后没有考虑前导0的情况,就wa了.. 题目链接: http://codeforces.com/probl ...

  5. XAML 很少人知道的科技 - walterlv

    原文:XAML 很少人知道的科技 - walterlv XAML 很少人知道的科技 发布于 2019-04-30 02:30 更新于 2019-04-30 11:08 本文介绍不那么常见的 XAML ...

  6. W600 一块新的 KiCad PCB

    W600 一块新的 KiCad PCB 打算做以下功能. Type-C USB. 使用 KiCad 画板. 加入串口芯片,方便调试. 使用 PCB 天线.

  7. Lambda plus: 云上大数据解决方案

    本文会简述大数据分析场景需要解决的技术挑战,讨论目前主流大数据架构模式及其发展.最后我们将介绍如何结合云上存储.计算组件,实现更优的通用大数据架构模式,以及该模式可以涵盖的典型数据处理场景. 大数据处 ...

  8. HZOJ 辣鸡(ljh)

    题解?noipT1还需要题解?正解就是$n^2$大暴力. 考试的时候打了$n^2$的暴力,也想到了正解的优化,然而觉得它太麻烦了,而且$n^2$怎么优化也过不了50000啊,而且即使不优化前面30分我 ...

  9. 性能改善后复杂SQL

    <?xml version="1.0" encoding="UTF-8" ?><!DOCTYPE mapper PUBLIC "-/ ...

  10. H3C 星型以太网拓扑扩展