PP: UMAP: uniform manifold approximation and projection for dimension reduction
From Tutte institute for mathematics and computing
Problem: dimension reduction
Theoretical foundations:
At a high level, UMAP uses local manifold approximations and patches together their local fuzzy simplicial set representations to construct a topological representation of the high dimensional data. Given some low dimensional representation of the data, a similar process can be used to construct an equivalent topological representation. UMAP then optimizes the layout of the data representation in the low dimensional space, to minimize the cross-entropy between the two topological representations.
解释:使用local manifold approximations and local fuzzy simplicial set presentations, 在高维空间上构建了一个拓扑表征topological representation,在低维空间上,同样构建一个等价的拓扑表征,之后运用交叉熵作为优化函数,来计算两个空间拓扑表征的差异性,从而使差异性最小化。
Construction of fuzzy topological representations:
1. approximating a manifold on which the data is assumed to lie;
2. constructing a fuzzy simplicial set representation of the approximated manifold.
解释:
疑问:一组高维数据究竟落在哪?高维数据应该用哪个空间进行衡量?Euclidean space, topological space, Riemannian space还是啥空间测量?还是应用不同的空间策略都能得到相似的结果?
1. approximating a manifold on which the data is assumed to lie,
Suppose the manifold is not known in advance and we wish to approximate geodesic distance on it. Let the input data be X = {X1 , . . . , XN }.
A Computational view of UMAP:
Two phases.
In the first phase, a particular weighted k-neighbour graph is constructed. In the second phase, a low dimensional layout of this graph is computed
1. weighted k-neighbour graph construction
Use the nearest neighbor descent algorithm of [1]
2. low dimensional layout
Use force-directed graph layout in low dimensional space.
Implementation and hyper-parameters:
Supplementary knowledge:
1. simplicial sets. 单纯集
In mathematics, a simplicial set is an object made up of "simplices单纯形" in a specific way. Simplicial sets are higher-dimensional generalizations of directed graphs, partially ordered sets and categories.
simplex: 单纯形,
In geometry, a simplex (plural: simplexes or simplices) is a generalization of the notion of a triangle or tetrahedron四边形 to arbitrary dimensions.
For example,
- a 0-simplex is a point,
- a 1-simplex is a line segment,
- a 2-simplex is a triangle,
- a 3-simplex is a tetrahedron,
- a 4-simplex is a 5-cell.
2. Hadamard product/ pointwise product
3. What is n-skeleton?
4. mathematical conception
Convergent Sequence, 收敛序列
The concept of a space is an extremely general and important mathematical construct. Members of the space obey certain addition properties. Spaces which have been investigated and found to be of interest are usually named after one or more of their investigators.
The everyday type of space familiar to most people is called Euclidean space. In Einstein's theory of Special Relativity, Euclidean three-space plus time (the "fourth dimension") are unified into the so-called Minkowski space. One of the most general type of mathematical spaces is the topological space.
Metric Space
A metric space is a set with a global distance function (the metric ) that, for every two points in , gives the distance between them as a nonnegative real number . A metric space must also satisfy
1. iff ,
2. ,
3. The triangle inequality .
Euclidean space:
Euclidean -space, sometimes called Cartesian space or simply -space, is the space of all n-tuples of real numbers, (, , ..., ). Such -tuples are sometimes called points, although other nomenclature may be used (see below). The totality of -space is commonly denoted ,.
Topological space:
A topological space, also called an abstract topological space, is a set together with a collection of open subsets that satisfies the four conditions:
1. The empty set is in .
2. is in .
3. The intersection of a finite number of sets in is also in .
4. The union of an arbitrary number of sets in is also in .
Triangle inequality
Let and be vectors. Then the triangle inequality is given by
(1)
|
Equivalently, for complex numbers and ,
5. the difference between Euclidean space and Riemannian space
黎曼将二维曲面的球面几何、双曲几何(即罗巴切夫斯基几何)和欧氏几何统一在下述黎曼度规表达式中
这个弧长微分ds表达式中的α,是2维曲面的高斯曲率。当α=+1时,度规所描述的是三角形内角和E大于180°的球面几何;当α=-1时,所描述的是内角和E小于180°的双曲几何;当α=0,则对应于通常的欧几里德几何(图2)。黎曼引入度规的概念,将三种几何统一在一起,使得非欧几何焕发出蓬勃的生机。
Reference
1. Efficient k-nearest neighbor graph construction for generic similarity measures
2. 欧氏空间与黎曼空间
PP: UMAP: uniform manifold approximation and projection for dimension reduction的更多相关文章
- 局部敏感哈希-Locality Sensitivity Hashing
一. 近邻搜索 从这里开始我将会对LSH进行一番长篇大论.因为这只是一篇博文,并不是论文.我觉得一篇好的博文是尽可能让人看懂,它对语言的要求并没有像论文那么严格,因此它可以有更强的表现力. 局部敏感哈 ...
- Machine Learning/Random Projection
这次突然打算写点dimension reduction的东西, 虽然可以从PCA, manifold learning之类的东西开始, 但很难用那些东西说出好玩的东西. 这次选择的是一个不太出名但很有 ...
- NEU(Fst Network Embedding Enhancement via High Order Proximity Approximation)
NEU(Fst Network Embedding Enhancement via High Order Proximity Approximation) NEU:通过对高阶相似性的近似,加持快速网络 ...
- PP: Learning representations for time series clustering
Problem: time series clustering TSC - unsupervised learning/ category information is not available. ...
- Computer Graphics Research Software
Computer Graphics Research Software Helping you avoid re-inventing the wheel since 2009! Last update ...
- WikiBooks/Cg Programming
https://en.wikibooks.org/wiki/Cg_Programming Basics Minimal Shader(about shaders, materials, and gam ...
- 降维工具箱drtool
工具箱下载:http://leelab.googlecode.com/svn/trunk/apps/drtoolbox/ ——————————————————————————————————————— ...
- matlab 降维工具 转载【https://blog.csdn.net/tarim/article/details/51253536】
降维工具箱drtool 这个工具箱的主页如下,现在的最新版本是2013.3.21更新,版本v0.8.1b http://homepage.tudelft.nl/19j49/Matlab_Toolb ...
- 斯坦福CS课程列表
http://exploredegrees.stanford.edu/coursedescriptions/cs/ CS 101. Introduction to Computing Principl ...
随机推荐
- css基础-float浮动
float实现文字环绕图片效果: <!DOCTYPE html> <html lang="en"> <head> <meta charse ...
- P2853 [USACO06DEC]牛的野餐Cow Picnic
------------------------- 长时间不写代码了,从学校中抽身出来真的不容易啊 ------------------------ 链接:Miku ----------------- ...
- Linux内核本地提权漏洞(CVE-2019-13272)
漏洞描述 kernel / ptrace.c中的ptrace_link错误地处理了想要创建ptrace关系的进程的凭据记录,这允许本地用户通过利用父子的某些方案来获取root访问权限 进程关系,父进程 ...
- 【编译原理】TEST递归下降演示
MyUtil.java package Util; import Value_Final.RRule; public class MyUtil { /** * 判断字符串是否是关键字 * @param ...
- STL入门学习中碰到的一些函数
2020.02.10 fill #include<algorithm> vector<int> v{ 1, 2, 3, 3 }; fill(v.begin(), v.end() ...
- Qt中MySQL数据库的操作例程
数据库连接不成功时,要将libmysql.dll放到C:\Qt\Qt5.11.0\5.11.0\mingw53_32\bin和C:\Qt\Qt5.11.0\5.11.0\msvc2017_64\bin ...
- CentOS7防火墙设置常用命令
目录 开/关/重启防火墙 查看所有开启的端口号 CentOS7环境下防火墙常用命令 开/关/重启防火墙 查看防火墙状态 firewall-cmd --state 启动防火墙 systemctl sta ...
- C#排序算法的实现---冒泡排序
一.算法原理 冒泡排序算法的运作如下: 比较相邻的元素.如果第一个比第二个大,就交换他们两个. 对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对.在这一点,最后的元素应该会是最大的数. 针对 ...
- 剑指offer-面试题6-从头到尾打印链表-链表
/* 题目: 输入一个链表的头节点,从尾到头反过来打印每个节点的值 */ /* 思路: 解法一:利用栈后进先出的特性. 解法二:利用递归函数的性质. */ void PrintListReversin ...
- #4864. [BeiJing 2017 Wc]神秘物质 [FHQ Treap]
这题其实挺简单的,有个东西可能稍微难维护了一点点.. \(merge\ x\ e\) 当前第 \(x\) 个原子和第 \(x+1\) 个原子合并,得到能量为 \(e\) 的新原子: \(insert\ ...