PP: Shallow RNNs: a method for accurate time-series classification on tiny devices
Problem: time series classification
shallow RNNs: the first layer splits the input sequence and runs several independent RNNs. The second layer consumes the output of the first layer to capture long dependencies.
We improve inference time over standard RNNs without compromising accuracy.
Time series -------- temporal dependencies. Sequential models such as RNN are particularly well-suited in this context.
Directly leveraging RNNs for prediction in constrained scenarios is challenging, and requires large training and inference costs.
?? how long the recurrence of RNN should be?
Each time series is divided into independent parts, and a shared RNN operates on each brick independently, thus ensuring a small model size and short recurrence.
Only has a short recurrence.
Supplementary knowledge:
1. theoretical justification
2. weak/ strong assumptions; Model flow:
- assumption/ environment ~ weak or strong
- model
- results
- evaluation ~ baseline or indicator.
3. Sequential models: RNN;
PP: Shallow RNNs: a method for accurate time-series classification on tiny devices的更多相关文章
- PP: Triple-shapelet networks for time series classification
Problem: time series classification shapelet-based method: two issues 1. for multi-class imbalanced ...
- PP: Toeplitz Inverse Covariance-Based Clustering of Multivariate Time Series Data
From: Stanford University; Jure Leskovec, citation 6w+; Problem: subsequence clustering. Challenging ...
- PP: Extracting statisticla graph features for accurate and efficient time series classification
Problem: TSC, time series classification; Traditional TSC: find global similarities or local pattern ...
- Paper: A novel method for forecasting time series based on fuzzy logic and visibility graph
Problem Forecasting time series. Other methods' drawback: even though existing methods (exponential ...
- PP: Multilevel wavelet decomposition network for interpretable time series analysis
Problem: the important frequency information is lack of effective modelling. ?? what is frequency in ...
- Shallow copy and Deep copy
Shallow copy and Deep copy 第一部分: 一.来自wikipidia的解释: Shallow copy One method of copying an object is t ...
- System and method for assigning a message
A processor of a plurality of processors includes a processor core and a message manager. The messag ...
- ICLR 2014 International Conference on Learning Representations深度学习论文papers
ICLR 2014 International Conference on Learning Representations Apr 14 - 16, 2014, Banff, Canada Work ...
- 计算机视觉code与软件
Research Code A rational methodology for lossy compression - REWIC is a software-based implementatio ...
随机推荐
- 虚拟机VMware官网最新版附密钥,kali,ubuntu,centos,deepin迅雷下载地址。
以下全部都是官网的迅雷复制链接 版本都是当前时间可下载的最新版本 VMware官网迅雷下载链接: https://download3.vmware.com/software/wkst/file/VMw ...
- python3-cookbook笔记:第七章 函数
python3-cookbook中每个小节以问题.解决方案和讨论三个部分探讨了Python3在某类问题中的最优解决方式,或者说是探讨Python3本身的数据结构.函数.类等特性在某类问题上如何更好地使 ...
- Kubernetes CI/CD(1)
本文通过在kubernetes上启动Jenkins服务,并将宿主机上的docker.docker.sock挂载到Jenkins容器中,实现在Jenkins容器中直接打镜像的形式实现CI功能. Kube ...
- MNIST 源码解析
# Copyright 2015 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 ...
- 纪中10日T3 2296. 神殿 bfs
2296. 神殿 (File IO): input:temple.in output:temple.out 时间限制: 1500 ms 空间限制: 524288 KB 具体限制 Goto Prob ...
- if、counf、countif、countifs、sumif、sumifs
评分等级:=IF(C3>=90,"优秀",IF(C3>=80,"良好",IF(C3>=60,"及格","不及格& ...
- Selenium实战(四)——unittest单元测试2(断言方法+discover()多测试用例的执行)
一.断言方法 方法 检查 版本 assertEqual(a,b) a==b assertNotEqual(a,b) a!=b assertTrue(x) bool(x) is True a ...
- P4075 [SDOI2016]模式字符串
总结 P4075 [SDOI2016]模式字符串 题目描述 给出n个结点的树结构T,其中每一个结点上有一个字符,这里我们所说的字符只考虑大写字母A到Z,再给出长度为m的模式串s,其中每一位仍然是A到z ...
- 【转】Servlet 九大对象和四个作用域
隐式对象 说明 request 转译后对应HttpServletRequest/ServletRequest对象 response 转译后对应HttpServletRespons/ServletRes ...
- npm常用模块之chai使用
更多npm常用模块使用请访问:npm常用模块汇总 chai这是一款用于节点和浏览器的BDD / TDD断言库,可以与任何javascript测试框架完美地配对. 更多使用文档请点击访问chai工具官网 ...