PP: Shallow RNNs: a method for accurate time-series classification on tiny devices
Problem: time series classification
shallow RNNs: the first layer splits the input sequence and runs several independent RNNs. The second layer consumes the output of the first layer to capture long dependencies.
We improve inference time over standard RNNs without compromising accuracy.
Time series -------- temporal dependencies. Sequential models such as RNN are particularly well-suited in this context.
Directly leveraging RNNs for prediction in constrained scenarios is challenging, and requires large training and inference costs.
?? how long the recurrence of RNN should be?
Each time series is divided into independent parts, and a shared RNN operates on each brick independently, thus ensuring a small model size and short recurrence.
Only has a short recurrence.
Supplementary knowledge:
1. theoretical justification
2. weak/ strong assumptions; Model flow:
- assumption/ environment ~ weak or strong
- model
- results
- evaluation ~ baseline or indicator.
3. Sequential models: RNN;
PP: Shallow RNNs: a method for accurate time-series classification on tiny devices的更多相关文章
- PP: Triple-shapelet networks for time series classification
Problem: time series classification shapelet-based method: two issues 1. for multi-class imbalanced ...
- PP: Toeplitz Inverse Covariance-Based Clustering of Multivariate Time Series Data
From: Stanford University; Jure Leskovec, citation 6w+; Problem: subsequence clustering. Challenging ...
- PP: Extracting statisticla graph features for accurate and efficient time series classification
Problem: TSC, time series classification; Traditional TSC: find global similarities or local pattern ...
- Paper: A novel method for forecasting time series based on fuzzy logic and visibility graph
Problem Forecasting time series. Other methods' drawback: even though existing methods (exponential ...
- PP: Multilevel wavelet decomposition network for interpretable time series analysis
Problem: the important frequency information is lack of effective modelling. ?? what is frequency in ...
- Shallow copy and Deep copy
Shallow copy and Deep copy 第一部分: 一.来自wikipidia的解释: Shallow copy One method of copying an object is t ...
- System and method for assigning a message
A processor of a plurality of processors includes a processor core and a message manager. The messag ...
- ICLR 2014 International Conference on Learning Representations深度学习论文papers
ICLR 2014 International Conference on Learning Representations Apr 14 - 16, 2014, Banff, Canada Work ...
- 计算机视觉code与软件
Research Code A rational methodology for lossy compression - REWIC is a software-based implementatio ...
随机推荐
- python学习------文件的读与写
f=open("yesterday","r",encoding="utf-8") #文件句柄 data=f.read() data2=f.r ...
- MySql学习-1.MySql的安装:
1.安装包的下载(mysql-v5.7.25 )(NavicatforMySQL_11.2.15): 链接:https://pan.baidu.com/s/166hyyYd3DMjYhMwdW805F ...
- 第四次oo博客作业
(1)本单元是撰写UML数据分析器,架构大致如下,在指导书要求的函数外,对于UmlClass类,Umlinterface类,以及状态机,顺序图这四个类重现构造一个类,这个类里有他们所需要的全部信息,另 ...
- webStorm 2019 激活码,phpStorm 2019激活,idea激活,pyCharm激活【永久使用】
[2020-01-16 亲测可用] 无废话版!----直接激活 [麻烦激活后,在评论发表:eg:2020-01-11 09:00 测试可用],有问题直接反馈 我及时修改,建议收藏此博客 都能永久激活, ...
- C#XML文件操作随笔
以为公司一直没有电源屏厂家协议解析为DevVars相关的软件,手写费时费力还容易出错,用了2天时间做了一个.txt协议文件筛选加并解析成xml文件的工具,总结一下用到的几个知识点 1.LINQ 是一个 ...
- 在C#下使用TensorFlow.NET训练自己的数据集
在C#下使用TensorFlow.NET训练自己的数据集 今天,我结合代码来详细介绍如何使用 SciSharp STACK 的 TensorFlow.NET 来训练CNN模型,该模型主要实现 图像的分 ...
- Java代码操作Elasticsearch
创建maven项目,导入依赖 <dependency> <groupId>junit</groupId> <artifactId>junit</a ...
- centos7&python3.6uwsgi安装
yum install python3-devel.x86_64 pip install uwsgi
- 复习mongoose的基本使用
mongodb参考 mongoose官网 mongoose用起来更便捷,更方便些
- c#获取所有枚举
获取所有的枚举 1.将所有的枚举单独成一个项目 2.通Assembly加载程序集 3.通过Assembly对象的GetTypes获取所有的枚举类型 4.通过Enum.GetValues可以得到枚举的所 ...