洛谷P2522 [HAOI2011]Problem b (莫比乌斯反演+容斥)
题意:求$\sum_{i=a}^{b}\sum_{j=c}^{d}[gcd(i,j)==k]$(1<=a,b,c,d,k<=50000)。
是洛谷P3455 [POI2007]ZAP-Queries加强版,多了下界。
设$f(n,m)=\sum_{i=1}^{n}\sum_{j=1}^{m}[gcd(i,j)==k]$
根据容斥可以显然的得出Ans=f(b,d)-f(b,c-1)-f(a-1,d)+f(a-1,c-1)。
对于f(n,m)的求解:
$f(n,m)=\sum_{i=1}^{n}\sum_{j=1}^{m}[gcd(i,j)==k]$
$=\sum_{i=1}^{\lfloor \frac{n}{k}\rfloor}\sum_{j=1}^{\lfloor \frac{m}{k}\rfloor}[gcd(i,j)==1]$
$=\sum_{d=1}^{\lfloor \frac{n}{k}\rfloor}\mu(d){\lfloor \frac{n}{kd}\rfloor}{\lfloor \frac{m}{kd}\rfloor}$
预处理莫比乌斯函数前缀和,后面整除分块。
#include <bits/stdc++.h>
#define ll long long
using namespace std;
const int N=;
bool p[N];
int pri[N],tot,mu[N];
void init() {
mu[]=;
for(int i=;i<N;i++) {
if(!p[i]) pri[tot++]=i,mu[i]=-;
for(int j=;j<tot&&pri[j]*i<N;j++) {
p[pri[j]*i]=true;
if(i%pri[j]==) {
mu[i*pri[j]]=;
break;
}
else mu[i*pri[j]]=-mu[i];
}
}
for(int i=;i<N;i++) mu[i]+=mu[i-];
}
ll cal(int n,int m,int k) {
if(n>m) swap(n,m);
ll ans=;
for(int l=,r;l<=n;l=r+) {
r=min(n/(n/l),m/(m/l));
ans+=1LL*(mu[r]-mu[l-])*(n/k/l)*(m/k/l);
}
return ans;
}
int main() {
init();
int T,a,b,c,d,k;
scanf("%d",&T);
while(T--) {
scanf("%d%d%d%d%d",&a,&b,&c,&d,&k);
printf("%lld\n",cal(b,d,k)-cal(b,c-,k)-cal(a-,d,k)+cal(a-,c-,k));
}
return ;
}
洛谷P2522 [HAOI2011]Problem b (莫比乌斯反演+容斥)的更多相关文章
- 洛谷P2522 [HAOI2011]Problem b(莫比乌斯反演)
题目描述 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. 输入输出格式 输入格式: 第一行一个整数 ...
- BZOJ.2301.[HAOI2011]Problem B(莫比乌斯反演 容斥)
[Update] 我好像现在都看不懂我当时在写什么了=-= \(Description\) 求\(\sum_{i=a}^b\sum_{j=c}^d[(i,j)=k]\) \(Solution\) 首先 ...
- BZOJ2301:[HAOI2011]Problem b(莫比乌斯反演,容斥)
Description 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. Input 第一行一个整数 ...
- P2522 [HAOI2011]Problem b (莫比乌斯反演)
题目 P2522 [HAOI2011]Problem b 解析: 具体推导过程同P3455 [POI2007]ZAP-Queries 不同的是,这个题求的是\(\sum_{i=a}^b\sum_{j= ...
- 洛谷P2522 [HAOI2011]Problem b(莫比乌斯反演)
传送门 我们考虑容斥,设$ans(a,b)=\sum_{i=1}^a\sum_{j=1}^b[gcd(a,b)==k]$,这个东西可以和这一题一样去算洛谷P3455 [POI2007]ZAP-Quer ...
- 洛谷 P2522 [HAOI2011]Problem b (莫比乌斯反演+简单容斥)
题目描述 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. 输入输出格式 输入格式: 第一行一个整数 ...
- 洛谷P2522 - [HAOI2011]Problem b
Portal Description 进行\(T(T\leq10^5)\)次询问,每次给出\(x_1,x_2,y_1,y_2\)和\(d\)(均不超过\(10^5\)),求\(\sum_{i=x_1} ...
- BZOJ 2301 Problem b (莫比乌斯反演+容斥)
这道题和 HDU-1695不同的是,a,c不一定是1了.还是莫比乌斯的套路,加上容斥求结果. 设\(F(n,m,k)\)为满足\(gcd(i,j)=k(1\leq i\leq n,1\leq j\le ...
- Luogu P2522 [HAOI2011]Problem b 莫比乌斯反演
设$f(d)=\sum_{i=1}^N\sum_{j=1}^M[gcd(i,j)==d],\\F(n)=\sum_{n|d}f(d)=\lfloor \frac{N}{n} \rfloor \lflo ...
随机推荐
- IO流19(完) --- RandomAccessFile实现数据的插入 --- 技术搬运工(尚硅谷)
原hello.txt文件中的内容:abcdefghijklmn 想要实现的效果是,将xyz插入到abc后面,将文件内容变成:abcxyzdefghijklmn @Test public void te ...
- C++ string(STL)
发现字符串问题中 string 好厉害- string类的构造函数: string(const char *s); //用c字符串s初始化 string(int n,char c); //用n个字符c ...
- excel2013做数据透视表
excel2013做数据透视表 Excel最新版更新到2013,相比2003.2007和2010,2013的excel界面方面有一定变化,在操作方面也有一定的便捷性.那么如何使用excel20 ...
- 洛谷P1368 均分纸牌(加强版) [2017年6月计划 数论14]
P1368 均分纸牌(加强版) 题目描述 有 N 堆纸牌,编号分别为 1,2,…, N.每堆上有若干张,纸牌总数必为 N 的倍数.可以在任一堆上取1张纸牌,然后移动. 移牌规则为:在编号为 1 堆上取 ...
- SQL SERVER 自增列的方法
declare @Table_name varchar(60) set @Table_name = ''; if Exists(Select top 1 1 from sysobjects ...
- fileinput URL携带参数的问题,uploadExtraData,Bootstrap
因为无法在URL中执行其他代码,通过阅读文档可知可以由uploadExtraData参数携带数据.于是在这里携带,如果uploadExtraData 无法接收到数据,一般是格式有误, 先尝试这个简单的 ...
- js经典校验之注册与登录校验
平时都专注于后台功能的实现和逻辑需求的分析及数据库方面的设计,很少关注前端的设计,而项目开发过程中专门负责后台是不太可能的事,所以前端我们也需要会用,除了漂亮的首页等其他的交给美工来做,一些功能性的东 ...
- excel怎么并排查看两个工作表
excel怎么并排查看两个工作表 excel怎么并排查看两个工作表?excel打开一个窗口想要同时查看两个工作表中的数据,类似于word中的分栏效果,该怎么实现呢?EXCEL是一个使用最多的办公软件, ...
- Linux下的MySQL主从同步
网上一些关于Linux下的MySQL主从同步教程非常之多,有些很简单的配置却弄的非常复杂,有些根本无法配通,下面是我通过简单的配置完成的主从同步过程,大家可以参考,此文章更适用于新手. 一.测试环境: ...
- Android 对保存在 sharedpreference的重要数据进行编解码
有时候为了登录方便会将用户名和密码保存在 sharedpreference里面,可是如果不加以处理密码将以明文保存. 在Android中java层提供了工具类:android.util.Base64; ...