Miller Rabin算法学习笔记
定义:##
Miller Rabin算法是一个随机化素数测试算法,作用是判断一个数是否是素数,且只要你脸不黑以及常数不要巨大一般来讲都比\(O(\sqrt n)\)的朴素做法更快。
定理:##
Miller Rabin主要基于费马小定理:
于是就有~~闲得没事干的~~一群科学家们想,这个问题的逆命题是否成立呢?
> 逆命题:若对于任意$a$,$a ^ {p-1} \equiv 1 (mod p)$都成立,那么$p$是质数。
在很长一段时间里,所有人几乎都以为它是成立的。~~然鹅你们手玩一个$a=8, p = 9$试试~~
是的,这个东西被搞出了反例。不过幸运的是,用这个办法测试通过的数,还是有很大概率是质数的。
这好办,我们多搞几次不就可以当做它就是质数了吗!~~脸黑另说~~
##算法流程:##
首先我们还得了解一个叫二次探测定理的东西:
> $$若p是质数,且x^2 \equiv 1 (mod p), 则有x \equiv ±1 (mod p)\]
证明很简单,第一个式子右边丢过去平方差即可。由于p是质数,所以它肯定不是\((x-1)和(x+1)\)凑起来的,故两个里面总有一个是\(p\)的倍数。
而且很容易脑补的是,这个东西的逆命题是成立的。(划重点)
所以根据这两个定理,我们设计一波算法:
假设我们要判断的数是\(p\),那么\(2\)特判一波,剩下的质数肯定是奇数。
所以\(p-1\)一定是一个偶数。然后就好办啦!
我们把\(p-1\)分解成\(2^k * t\),当\(p\)是素数时,根据费马小定理有$$a ^ {2^k * t} \equiv 1 (mod p)$$
那么我们随机出一个\(a\),然后求出\(a^t\),再不断乘上\(a\),每次进行二次探测,边乘边模,若乘之前不符合二次探测,而乘之后符合,那么p是合数,不符合题意。自乘\(k\)次,最后得到\(a^{p-1}\),如果模\(p\)不等于1,则也是合数。(不符合费马小定理)
老祖宗告诉我们(这个我也不会证),每一次通过测试的数不是质数的概率为\(\frac{1}{4}\),则测试\(k\)次,错误的概率为\(\frac{1}{4^k}\),\(k>6\)的时候基本就血赚了。
代码:##
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
int c[23] = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43};
int n, m;
inline ll read() {
ll cnt = 0, f = 1; char c;
c = getchar();
while (!isdigit(c)) {if (c == '-') f = -f; c = getchar();}
while (isdigit(c)) {cnt = (cnt << 3) + (cnt << 1) + c - '0'; c = getchar();}
return cnt * f;
}
inline ll ksm(ll a, ll b, ll c) {
ll ans = 1;
while (b) {
if (b & 1) ans = ans * a % c;
a = a * a % c, b >>= 1;
}
return ans % c;
}
bool miller_rabin(int p) {
if (p == 1) return false;
if (p == 2) return true;
if (p % 2 == 0) return false;
bool f = 1;
for (register int i = 0; i <= 13; ++i) {
if (c[i] == p) return true;
ll x = p - 1, y = 0;
while (x % 2 == 0) x /= 2, ++ y; // 将p-1分解成2^y*x
ll cur = ksm(c[i], x, p); //计算出a^x % p
if (cur == 1) continue; //小优化,如果此时结果为1,那么无论如何自乘也为1
for (register int j = 1; j <= y; ++j) {
ll nxt = cur * cur % p; //不断自乘
if (nxt == 1 && cur != p - 1 && cur != 1) {
f = 0;
break;
}
cur = nxt;
}
if (cur != 1) f = 0;
if (!f) break;
}
return f;
}
int main() {
n = read(); m = read();
while (m--) {printf(miller_rabin(read()) ? "Yes\n" : "No\n");}
return 0;
}
Miller Rabin算法学习笔记的更多相关文章
- C / C++算法学习笔记(8)-SHELL排序
原始地址:C / C++算法学习笔记(8)-SHELL排序 基本思想 先取一个小于n的整数d1作为第一个增量(gap),把文件的全部记录分成d1个组.所有距离为dl的倍数的记录放在同一个组中.先在各组 ...
- Miller Rabin算法详解
何为Miller Rabin算法 首先看一下度娘的解释(如果你懒得读直接跳过就可以反正也没啥乱用:joy:) Miller-Rabin算法是目前主流的基于概率的素数测试算法,在构建密码安全体系中占有重 ...
- Manacher算法学习笔记 | LeetCode#5
Manacher算法学习笔记 DECLARATION 引用来源:https://www.cnblogs.com/grandyang/p/4475985.html CONTENT 用途:寻找一个字符串的 ...
- Pollard rho算法+Miller Rabin算法 BZOJ 3668 Rabin-Miller算法
BZOJ 3667: Rabin-Miller算法 Time Limit: 60 Sec Memory Limit: 512 MBSubmit: 1044 Solved: 322[Submit][ ...
- Miller Rabin 算法简介
0.1 一些闲话 最近一次更新是在2019年11月12日.之前的文章有很多问题:当我把我的代码交到LOJ上,发现只有60多分.我调了一个晚上,尝试用{2, 3, 5, 7, 11, 13, 17, 1 ...
- Johnson算法学习笔记
\(Johnson\)算法学习笔记. 在最短路的学习中,我们曾学习了三种最短路的算法,\(Bellman-Ford\)算法及其队列优化\(SPFA\)算法,\(Dijkstra\)算法.这些算法可以快 ...
- 某科学的PID算法学习笔记
最近,在某社团的要求下,自学了PID算法.学完后,深切地感受到PID算法之强大.PID算法应用广泛,比如加热器.平衡车.无人机等等,是自动控制理论中比较容易理解但十分重要的算法. 下面是博主学习过程中 ...
- 【数论基础】素数判定和Miller Rabin算法
判断正整数p是否是素数 方法一 朴素的判定
- Johnson 全源最短路径算法学习笔记
Johnson 全源最短路径算法学习笔记 如果你希望得到带互动的极简文字体验,请点这里 我们来学习johnson Johnson 算法是一种在边加权有向图中找到所有顶点对之间最短路径的方法.它允许一些 ...
随机推荐
- docker中国区镜像加速
[root@syzyy ~]# vim /etc/docker/daemon.json { "registry-mirros":[ "https://registry.d ...
- SQLite wrapper
SQLiteWrapper is a C++ wrapper for SQLite. There are some test programs that demonstrate how the SQL ...
- 如何查看redis占用内存大小
redis缓存固然高效,可是它会占用我们系统中宝贵的内存资源,特别是当我们的项目运行了一段时间后,我们需要看一下redis占用了多少内存,那么可以用“info”命令查看. 执行info命令后,找到Me ...
- python paramiko模块学习分享
python paramiko模块学习分享 paramiko是用python语言写的一个模块,遵循SSH2协议,支持以加密和认证的方式,进行远程服务器的连接.paramiko支持Linux, Sola ...
- 创建自定义ssl证书用于https
这里,不探究证书原理.我们要完成的任务是,自己充当CA,然后签出证书供服务器使用. 本次教程是在windows实现,实验之前,确认自己的电脑中有openssl程序.如果没有,博主帮你准备了一个:htt ...
- c++中变量、变量名、变量地址、指针、引用等含义
首先了解内存,内存就是一排房间,编号从0开始,0,1,2,3,4,5...... 房间里面一定要住人,新人住进去了,原来的人就走了:不管你住不住,里面都有人. 编号就是地址.里面的人就是内容,为了我们 ...
- Java 高级面试知识点汇总!
1.常用设计模式 单例模式:懒汉式.饿汉式.双重校验锁.静态加载,内部类加载.枚举类加载.保证一个类仅有一个实例,并提供一个访问它的全局访问点. 代理模式:动态代理和静态代理,什么时候使用动态代理. ...
- 学SpringBoot一篇就够了
1.SpringBoot概述 Spring 框架对于很多 Java 开发人员来说都不陌生.自从 2002 年发布以来,Spring 框架已经成为企业应用开发领域非常流行的基础框架.有大量的企业应用基于 ...
- new linux setup, yum command
7 yum list 9 cd /etc/yum.repos.d/ 55 history | grep yum 56 yum -y list screen* 57 yum -y instal ...
- [转]WPF——Thumb
Thumb类,表示可由用户拖动的控件.其主要三个事件分别DragDelta,DragStarted,DragCompleted. DragDelta——当 Thumb 控件具有逻辑焦点和鼠标捕获时,随 ...