TensorFlow 中的卷积网络
TensorFlow 中的卷积网络
是时候看一下 TensorFlow 中的卷积神经网络的例子了。
网络的结构跟经典的 CNNs 结构一样,是卷积层,最大池化层和全链接层的混合。
这里你看到的代码与你在 TensorFlow 深度神经网络的代码类似,我们按 CNN 重新组织了结构。
如那一节一样,这里你将会学习如何分解一行一行的代码。你还可以下载代码自己运行。
感谢 Aymeric Damien 提供了这节课的原始 TensorFlow 模型。
现在开看下!
数据集
你从之前的课程中见过这节课的代码。这里我们导入 MNIST 数据集,用一个方便的函数完成对数据集的 batch,缩放和独热编码。
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets(".", one_hot=True, reshape=False) import tensorflow as tf # Parameters
# 参数
learning_rate = 0.00001
epochs = 10
batch_size = 128 # Number of samples to calculate validation and accuracy
# Decrease this if you're running out of memory to calculate accuracy
# 用来验证和计算准确率的样本数
# 如果内存不够,可以调小这个数字
test_valid_size = 256 # Network Parameters
# 神经网络参数
n_classes = 10 # MNIST total classes (0-9 digits)
dropout = 0.75 # Dropout, probability to keep units
Weights and Biases
# Store layers weight & bias
weights = {
'wc1': tf.Variable(tf.random_normal([5, 5, 1, 32])),
'wc2': tf.Variable(tf.random_normal([5, 5, 32, 64])),
'wd1': tf.Variable(tf.random_normal([7*7*64, 1024])),
'out': tf.Variable(tf.random_normal([1024, n_classes]))} biases = {
'bc1': tf.Variable(tf.random_normal([32])),
'bc2': tf.Variable(tf.random_normal([64])),
'bd1': tf.Variable(tf.random_normal([1024])),
'out': tf.Variable(tf.random_normal([n_classes]))}
卷积
这是一个 3x3 的卷积滤波器的示例。以 stride 为 1 应用到一个范围在 0 到 1 之间的数据上。每一个 3x3 的部分与权值 [[1, 0, 1], [0, 1, 0], [1, 0, 1]] 做卷积,把偏置加上后得到右边的卷积特征。这里偏置是 0 。TensorFlow 中这是通过 tf.nn.conv2d() 和 tf.nn.bias_add() 来完成的。
def conv2d(x, W, b, strides=1):
x = tf.nn.conv2d(x, W, strides=[1, strides, strides, 1], padding='SAME')
x = tf.nn.bias_add(x, b)
return tf.nn.relu(x)
tf.nn.conv2d() 函数与权值 W 做卷积。
在 TensorFlow 中,strides 是一个4个元素的序列;第一个位置表示 stride 的 batch 参数,最后一个位置表示 stride 的特征(feature)参数。最好的移除 batch 和特征(feature)的方法是你直接在数据集中把他们忽略,而不是使用 stride。要使用所有的 batch 和特征(feature),你可以把第一个和最后一个元素设成1。
中间两个元素指纵向(height)和横向(width)的 stride,之前也提到过 stride 通常是正方形,height = width。当别人说 stride 是 3 的时候,他们意思是 tf.nn.conv2d(x, W, strides=[1, 3, 3, 1])。
为了更简洁,这里的代码用了tf.nn.bias_add() 来添加偏置。 tf.add() 这里不能使用,因为 tensors 的维度不同。
最大池化
带有 2x2 滤波器 和 stride 为 2 的最大池化。来源:
上面是一个最大池化的示例。滤波器大小是 2x2,stride 是 2。左边是输入,右边是输出。 四个 2x2 的颜色代表每一次滤波器应用在左侧来构建右侧的最大结果。例如。[[1, 1], [5, 6]] 变成 6,[[3, 2], [1, 2]] 变成 3。
def maxpool2d(x, k=2):
return tf.nn.max_pool(
x,
ksize=[1, k, k, 1],
strides=[1, k, k, 1],
padding='SAME')
tf.nn.max_pool() 函数做的与你期望的一样,它通过设定 ksize 参数来设定滤波器大小,从而实现最大池化。
模型
Image from Explore The Design Space video
在下面的代码中,我们创建了 3 层来实现卷积,最大池化以及全链接层和输出层。每一层对维度的改变都写在注释里。例如第一层在卷积部分把图片从 28x28x1 变成了 28x28x32。后面应用了最大池化,每个样本变成了 14x14x32。从 conv1 经过多层网络,最后到 output 生成 10 个分类。
def conv_net(x, weights, biases, dropout):
# Layer 1 - 28*28*1 to 14*14*32
conv1 = conv2d(x, weights['wc1'], biases['bc1'])
conv1 = maxpool2d(conv1, k=2) # Layer 2 - 14*14*32 to 7*7*64
conv2 = conv2d(conv1, weights['wc2'], biases['bc2'])
conv2 = maxpool2d(conv2, k=2) # Fully connected layer - 7*7*64 to 1024
fc1 = tf.reshape(conv2, [-1, weights['wd1'].get_shape().as_list()[0]])
fc1 = tf.add(tf.matmul(fc1, weights['wd1']), biases['bd1'])
fc1 = tf.nn.relu(fc1)
fc1 = tf.nn.dropout(fc1, dropout) # Output Layer - class prediction - 1024 to 10
out = tf.add(tf.matmul(fc1, weights['out']), biases['out'])
return out
Session
现在让我们开始运行神经网络!
# tf Graph input
x = tf.placeholder(tf.float32, [None, 28, 28, 1])
y = tf.placeholder(tf.float32, [None, n_classes])
keep_prob = tf.placeholder(tf.float32) # Model
logits = conv_net(x, weights, biases, keep_prob) # Define loss and optimizer
cost = tf.reduce_mean(\
tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=y))
optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate)\
.minimize(cost) # Accuracy
correct_pred = tf.equal(tf.argmax(logits, 1), tf.argmax(y, 1))
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32)) # Initializing the variables
init = tf. global_variables_initializer() # Launch the graph
with tf.Session() as sess:
sess.run(init) for epoch in range(epochs):
for batch in range(mnist.train.num_examples//batch_size):
batch_x, batch_y = mnist.train.next_batch(batch_size)
sess.run(optimizer, feed_dict={
x: batch_x,
y: batch_y,
keep_prob: dropout}) # Calculate batch loss and accuracy
loss = sess.run(cost, feed_dict={
x: batch_x,
y: batch_y,
keep_prob: 1.})
valid_acc = sess.run(accuracy, feed_dict={
x: mnist.validation.images[:test_valid_size],
y: mnist.validation.labels[:test_valid_size],
keep_prob: 1.}) print('Epoch {:>2}, Batch {:>3} -'
'Loss: {:>10.4f} Validation Accuracy: {:.6f}'.format(
epoch + 1,
batch + 1,
loss,
valid_acc)) # Calculate Test Accuracy
test_acc = sess.run(accuracy, feed_dict={
x: mnist.test.images[:test_valid_size],
y: mnist.test.labels[:test_valid_size],
keep_prob: 1.})
print('Testing Accuracy: {}'.format(test_acc))
TensorFlow 中的卷积网络的更多相关文章
- TensorFlow中的卷积函数
前言 最近尝试看TensorFlow中Slim模块的代码,看的比较郁闷,所以试着写点小的代码,动手验证相关的操作,以增加直观性. 卷积函数 slim模块的conv2d函数,是二维卷积接口,顺着源代码可 ...
- tensorflow中的卷积和池化层(一)
在官方tutorial的帮助下,我们已经使用了最简单的CNN用于Mnist的问题,而其实在这个过程中,主要的问题在于如何设置CNN网络,这和Caffe等框架的原理是一样的,但是tf的设置似乎更加简洁. ...
- 卷积运算的本质,以tensorflow中VALID卷积方式为例。
卷积运算在数学上是做矩阵点积,这样可以调整每个像素上的BGR值或HSV值来形成不同的特征.从代码上看,每次卷积核扫描完一个通道是做了一次四重循环.下面以VALID卷积方式为例进行解释. 下面是pyth ...
- 第十四节,TensorFlow中的反卷积,反池化操作以及gradients的使用
反卷积是指,通过测量输出和已知输入重构未知输入的过程.在神经网络中,反卷积过程并不具备学习的能力,仅仅是用于可视化一个已经训练好的卷积神经网络,没有学习训练的过程.反卷积有着许多特别的应用,一般可以用 ...
- CNN中的卷积核及TensorFlow中卷积的各种实现
声明: 1. 我和每一个应该看这篇博文的人一样,都是初学者,都是小菜鸟,我发布博文只是希望加深学习印象并与大家讨论. 2. 我不确定的地方用了"应该"二字 首先,通俗说一下,CNN ...
- 深度学习卷积网络中反卷积/转置卷积的理解 transposed conv/deconv
搞明白了卷积网络中所谓deconv到底是个什么东西后,不写下来怕又忘记,根据参考资料,加上我自己的理解,记录在这篇博客里. 先来规范表达 为了方便理解,本文出现的举例情况都是2D矩阵卷积,卷积输入和核 ...
- 基于TensorFlow解决手写数字识别的Softmax方法、多层卷积网络方法和前馈神经网络方法
一.基于TensorFlow的softmax回归模型解决手写字母识别问题 详细步骤如下: 1.加载MNIST数据: input_data.read_data_sets('MNIST_data',one ...
- TensorFlow中卷积
CNN中的卷积核及TensorFlow中卷积的各种实现 声明: 1. 我和每一个应该看这篇博文的人一样,都是初学者,都是小菜鸟,我发布博文只是希望加深学习印象并与大家讨论. 2. 我不确定的地方用了“ ...
- 利用TensorFlow识别手写的数字---基于两层卷积网络
1 为什么使用卷积神经网络 Softmax回归是一个比较简单的模型,预测的准确率在91%左右,而使用卷积神经网络将预测的准确率提高到99%. 2 卷积网络的流程 3 代码展示 # -*- coding ...
随机推荐
- Java Servlet实现下载文件
一.配置servlet 在WebContent(以前的eclipse版本是WebRoot)文件夹下,有一个web.xml 修改web.xml ,加入以下代码 <servlet> <s ...
- OCR Tesseract 识别报 empty page解决办法
图片分辨率太低导致 周边加空白 然后重新操作,就行了
- c#的DateTime的各种字符串格式
今天看到工程里有关DateTime的有关知识,之前了解一些用法,比如怎么获取年月日,当前系统时间等等,但是,感觉还是有好多不知道,于是上网搜罗了一下,找到很多有关知识,现在与大家分享下: Da ...
- Leetcode55. Jump Game跳跃游戏
给定一个非负整数数组,你最初位于数组的第一个位置. 数组中的每个元素代表你在该位置可以跳跃的最大长度. 判断你是否能够到达最后一个位置. 示例 1: 输入: [2,3,1,1,4] 输出: true ...
- Google earth爬取卫星影像数据并进行标注路网的方法
一.下载goole earth 和GetScreen: 试了很多,找了可以使用的上传到百度网盘,链接如下所示: 链接:https://pan.baidu.com/s/1fp-W8u68iRsJ0xcu ...
- centos搭建svn 服务器 并同步到web 目录(总结)
配置搭建步骤: Linux平台的SVN服务器的配置及搭建 从本地提交代码到svn代码库. 将代码库中代码同步到web目录: 1.在web目录中checkout版本库 进入/home/www目录下 ( ...
- FPGA按键功能
1.如何判断按键成功按下? 2.在什么时候采集数据? 按键在按下的过程中会产生大约2ms-3ms抖动,如果此时此刻采集数据来判断按键是不准确的,那么为了采集到准确的数据需要设置一个大约10ms左右的计 ...
- LintCode刷题笔记-- BackpackIII
标签:动态规划 问题描述: Given n items with size Ai and value Vi, and a backpack with size m. What's the maximu ...
- WPF数据绑定详解
元素绑定 数据绑定最简单的形式是,源对象是WPF元素而且源属性是依赖属性.依赖项属性具有内置的更改通知支持,当在源对象中改变依赖项属性的值时,会立即更新目标对相中的绑定属性. <!--Xaml程 ...
- CentOS 安装svn及配置
1.环境centos5.5 2.安装svnyum -y install subversion 3.配置 建立版本库目录mkdir /www/svndata svnserve -d -r /www/sv ...