题目描述

“特大新闻,特大新闻!全国爆发了一种极其可怕的病毒,已经开始在各个城市 中传播开来!全国陷入了巨大的危机!大量居民陷入恐慌,想要逃到其它城市以 避难!经调查显示,该病毒来自于C 市的A 学校的一次非法的……” “哎。”你关上电视,叹了口气。作为A 学校的校长,你一天前为了保命,独自 逃离了A 学校,抛弃了全校师生,包括那个曾经帮你计算并拆除道路的工程师。 你良心受到了巨大的谴责,因此决定做出一些补救,回答一些逃难的人提出的询 问。 已知该国一共有n 个城市,并且1 号城市是首都。(n-1)条双向的公路连接这些 城市,通过这些公路,任意两个城市之间存在且仅存在一条路径。每条公路有一 个长度。如果一个城市只与一条公路相连,则称它为边境城市。 该国政府有一个奇怪的规定:每个城市有一个封闭系数di,定义di 为离这个城 市最远的边境城市到这个城市的距离。市民们认为,一个城市的安全系数Si 和 它的封闭系数有很重要的联系。a,b,c 是该国的幸运数字,所以大家公认一个 城市的安全系数Si = (di + a) * b mod c。 市民们一共会提出m 次询问。每个询问包含三个信息,xi,yi 和qi。xi 是询问 者所在的城市编号。你要为这个询问者在xi 到yi 的必经之路上找出一个离xi 最近的避难城市,并且要求这个避难城市的安全系数大于等于qi。如果存在这 样的城市(包含xi 和yi),则输出城市编号,否则输出一行包括一个数-1。

输入

第一行五个数:依次是n, m, a, b, c。 接下来n-1 行描述公路的信息。每行三个数,前两个数代表这条公路连接的两个 城市的编号,第三个数表示这条公路的长度。 再接下来m 行,每行描述一个询问,包含三个数xi, yi 和qi。

输出

对于每个询问,输出一行包含一个整数,存在符合要求的城市则输出城市编号, 不存在则输出-1。

样例输入

7 6 5 6 20

1 2 4

2 4 2

2 5 3

1 3 5

3 6 6

6 7 7

7 5 15

3 4 5

5 4 2

4 5 2

6 6 10

3 5 19

样例输出

6

3

2

4

6

-1

这个题目本身就是两种题型的合并

1、树的最长路径

2、树形倍增数组寻找最值

m^2p 刚学倍增就做这种有(wei)趣(suo)的题真的好吗

先解决最长链的问题,我用的是DP做法,时间复杂度为O(n):

设g[root][0]与g[root][1]为以root为根节点的子树由树根到叶节点的最长链和次长链,注意,最长链与次长链无重合边

一次DFS即可初始化

再设f[root][0]与f[root][1]表示以root为起点的最长链和次长链,也无重合边,一次DFS也可做到

最麻烦的就是倍增查询了:

先看看m的范围 300000

300000 是一个转折点,因为O(nlognlogn)在300000下会TLE

这就让我们只能用O(nlogn)来解决问题

状态应该不难定义:

设f[i][j]表示i节点的第2j个祖先的节点编号

设g[i][j]表示i节点到第2j个祖先之间的点权最大值

接下来便是O(logn)的查询,O(longnlogn)很好想,但现实就是这么骨感QwQ

设c=LCA(a,b),将一个路径拆分成a−>c−>b两部分

将总任务拆分成两个子任务

将一条x−y的直链看成A和B两部分

A中包含2的整数次幂个节点,且A的长度大于x−y总长度的一半

通过这样的观点来考察上述两个子任务:

一、离x最近的:

知道k时,可以O(1)判断答案是否在A中。

① 如果在A中,枚举i从k−1到0即可得到答案。

② 如果A中不存在合法解,则令x=f[x][k],递归进行以上过程。

对于①,整个递归过程中只有得出答案前会被执行一次。

对于②,每次递归后k的值减少,而k上界为logn,下界为0,所以递归深度为O(logn)

综上,该操作复杂度为O(logn)

二、离x最远的:

① 优先令x=f[x][k],递归在B段中求解。如递归返回后已经得到答案,则直接返回答案。

② 如经过①没有获得答案,则O(1)检查A段中是否有答案,如果没有,则x−y整段路径中无解。如果有,则枚举i从k−1到0即可定位答案。

类似子任务一,该部分的复杂度为O(logn)。

码了三个小时,终于AC了!!!!!!

代码如下:

#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm> #define LOG 20
#define maxn 100000 using namespace std; inline int getint()
{
int num=0,flag=1;char c;
while((c=getchar())<'0'||c>'9')if(c=='-')flag=-1;
while(c>='0'&&c<='9')num=num*10+c-48,c=getchar();
return num*flag;
} int s[maxn+5];
int fir[2*maxn+5],nxt[2*maxn+5],to[2*maxn+5],dis[2*maxn+5],cnt;
int n,m,a,b,c; inline void newnote(int u,int v,int w){to[++cnt]=v,dis[cnt]=w,nxt[cnt]=fir[u],fir[u]=cnt;} struct node1{ int f[maxn+5][2],g[maxn+5][2];
bool vis[maxn+5]; inline void work(int root)
{
int i;
vis[root]=1;
for(i=fir[root];i;i=nxt[i]) if(!vis[to[i]])
{
work(to[i]);
if(g[to[i]][0]+dis[i]>g[root][0])
g[root][1]=g[root][0],g[root][0]=g[to[i]][0]+dis[i];
else if(g[to[i]][0]+dis[i]>g[root][1])
g[root][1]=g[to[i]][0]+dis[i];
}
} inline void dp(int x,int fa,int c)
{
vis[x]=1;
if(x==1)
f[x][0]=g[x][0],f[x][1]=g[x][1];
else if(f[fa][0]==g[x][0]+c)
{
if(g[x][0]>=f[fa][1]+c)
f[x][0]=g[x][0],f[x][1]=max(f[fa][1]+c,g[x][1]);
else
f[x][0]=f[fa][1]+c,f[x][1]=g[x][0];
}
else
f[x][0]=f[fa][0]+c,f[x][1]=g[x][0];
for(int i=fir[x];i;i=nxt[i])
if(!vis[to[i]])dp(to[i],x,dis[i]);
} }farthest; struct node2{ int f[maxn+5][LOG+1],g[maxn+5][LOG+1],dep[maxn+5];
bool vis[maxn+5]; inline void dfs(int x)
{
for(int i=fir[x];i;i=nxt[i]) if(!vis[to[i]])
{
vis[to[i]]=1;dep[to[i]]=dep[x]+1;f[to[i]][0]=x;
g[to[i]][0]=max(s[to[i]],s[x]);dfs(to[i]);
}
} inline void dp()
{
for(int j=1;j<=LOG;j++)for(int i=1;i<=n;i++)
{
f[i][j]=f[f[i][j-1]][j-1];
g[i][j]=max(g[f[i][j-1]][j-1],g[i][j-1]);
}
} inline int getg(int u,int k)
{
int ans=-(1<<30);
for(int i=LOG;i>=0;i--)
if(k&(1<<i))ans=max(ans,g[u][i]),u=f[u][i];
return ans;
} inline int getk(int u,int k)
{
for(int i=LOG;i>=0;i--)
if(k&(1<<i))u=f[u][i];
return u;
} inline int getd(int u,int d){return getk(u,dep[u]-d);} inline int LCA(int u,int v)
{
int x=getd(u,min(dep[v],dep[u]));
int y=getd(v,min(dep[u],dep[v]));
if(x==y)return x;
for(int i=LOG;i>=0;i--)
if(f[x][i]!=f[y][i])x=f[x][i],y=f[y][i];
return f[x][0];
} inline int getg1(int x,int y,int w)
{
if(x==y)return s[x]>=w?x:-1;
int t=log2(dep[x]-dep[y]);
if(g[x][t]>=w)
{
for(int i=t-1;i>=0;i--)
if(g[x][i]<w)x=f[x][i];
return s[x]>=w?x:f[x][0];
}
else return getg1(f[x][t],y,w);
} inline int getg2(int x,int y,int w)
{
if(x==y)return s[x]>=w?x:-1;
int t=log2(dep[x]-dep[y]);
int tmp=getg2(f[x][t],y,w);
if(tmp!=-1) return tmp;
if(g[x][t]>=w)
{
for(int i=t-1;i>=0;i--)
if(g[f[x][i]][i]>=w)x=f[x][i];
return s[f[x][0]]>=w?f[x][0]:x;
}
return -1;
} }getans; int main()
{
int i,u,v,w;
n=getint(),m=getint(),a=getint(),b=getint(),c=getint();
for(i=1;i<n;i++)
{
u=getint(),v=getint(),w=getint();
newnote(u,v,w),newnote(v,u,w);
}
farthest.work(1);
memset(farthest.vis,0,sizeof farthest.vis);
farthest.dp(1,0,0);
for(i=1;i<=n;i++)
s[i]=((long long)((farthest.f[i][0]+a)%c)*(b%c))%c;
getans.dep[1]=getans.vis[1]=1,getans.dfs(1);
getans.dp();
for(i=1;i<=m;i++)
{
u=getint(),v=getint(),w=getint();
if(u==v){printf("%d\n",s[u]<w?-1:u);continue;}
int lca=getans.LCA(u,v);
int g1=getans.getg1(u,lca,w),g2=getans.getg2(v,lca,w);
if(~g1)printf("%d\n",g1);
else printf("%d\n",g2);
}
}

CQBZOJ 【重庆市NOIP模拟赛】避难向导的更多相关文章

  1. NOIP模拟赛20161022

    NOIP模拟赛2016-10-22 题目名 东风谷早苗 西行寺幽幽子 琪露诺 上白泽慧音 源文件 robot.cpp/c/pas spring.cpp/c/pas iceroad.cpp/c/pas ...

  2. contesthunter暑假NOIP模拟赛第一场题解

    contesthunter暑假NOIP模拟赛#1题解: 第一题:杯具大派送 水题.枚举A,B的公约数即可. #include <algorithm> #include <cmath& ...

  3. NOIP模拟赛 by hzwer

    2015年10月04日NOIP模拟赛 by hzwer    (这是小奇=> 小奇挖矿2(mining) [题目背景] 小奇飞船的钻头开启了无限耐久+精准采集模式!这次它要将原矿运到泛光之源的矿 ...

  4. 大家AK杯 灰天飞雁NOIP模拟赛题解/数据/标程

    数据 http://files.cnblogs.com/htfy/data.zip 简要题解 桌球碰撞 纯模拟,注意一开始就在袋口和v=0的情况.v和坐标可以是小数.为保险起见最好用extended/ ...

  5. 队爷的讲学计划 CH Round #59 - OrzCC杯NOIP模拟赛day1

    题目:http://ch.ezoj.tk/contest/CH%20Round%20%2359%20-%20OrzCC杯NOIP模拟赛day1/队爷的讲学计划 题解:刚开始理解题意理解了好半天,然后发 ...

  6. 队爷的Au Plan CH Round #59 - OrzCC杯NOIP模拟赛day1

    题目:http://ch.ezoj.tk/contest/CH%20Round%20%2359%20-%20OrzCC杯NOIP模拟赛day1/队爷的Au%20Plan 题解:看了题之后觉得肯定是DP ...

  7. 队爷的新书 CH Round #59 - OrzCC杯NOIP模拟赛day1

    题目:http://ch.ezoj.tk/contest/CH%20Round%20%2359%20-%20OrzCC杯NOIP模拟赛day1/队爷的新书 题解:看到这题就想到了 poetize 的封 ...

  8. CH Round #58 - OrzCC杯noip模拟赛day2

    A:颜色问题 题目:http://ch.ezoj.tk/contest/CH%20Round%20%2358%20-%20OrzCC杯noip模拟赛day2/颜色问题 题解:算一下每个仆人到它的目的地 ...

  9. CH Round #52 - Thinking Bear #1 (NOIP模拟赛)

    A.拆地毯 题目:http://www.contesthunter.org/contest/CH%20Round%20%2352%20-%20Thinking%20Bear%20%231%20(NOI ...

随机推荐

  1. 移动端H5多页开发拍门砖经验

    两年前刚接触移动端开发,刚开始比较疑惑,每次遇到问题都是到社区里提问或者吸取前辈的经验分享,感谢热衷于分享的开发者为前端社区带来欣欣向上的生命力.本文结合先前写的文章和开发经验分享给大家,希望也能帮助 ...

  2. Vijos1788 第K大 [模拟]

    1.题意:给定N个数字,和一个值K,要求输出一组数据中第K大的数字,其中30%的测试点满足:n <= 100;60%的测试点满足:n <= 1000;100%的测试点满足:n <= ...

  3. JAVA8学习——深入浅出函数式接口FunctionInterface(学习过程)

    函数式接口 函数式接口详解:FunctionInterface接口 话不多说,先打开源码,查阅一番.寻得FunctionInterface接口 package java.util.function; ...

  4. 如何在Linux上创建,列出和删除Docker容器

    本篇文章介绍的内容是关于在Linux机器上创建,列出和删除docker容器,下面我们来看具体的内容. 1.启动Docker容器 使用下面的命令启动新的Docker容器.这将启动一个新的容器,并为你提供 ...

  5. 【题解】PKUWC2018简要题解

    [题解]PKUWC2018简要题解 Minimax 定义结点x的权值为: 1.若x没有子结点,那么它的权值会在输入里给出,保证这类点中每个结点的权值互不相同. 2.若x有子结点,那么它的权值有p的概率 ...

  6. spring 与mybatis 整合

    步骤: pom文件添加依赖 创建包结构 添加application.yml, 配置数据库信息 使用mybatis-gennerator 生成三个文件 实体类 接口类 xml 文件 错误信息 xml 绑 ...

  7. 1088 三人行 (20分)C语言

    子曰:"三人行,必有我师焉.择其善者而从之,其不善者而改之." 本题给定甲.乙.丙三个人的能力值关系为:甲的能力值确定是 2 位正整数:把甲的能力值的 2 个数字调换位置就是乙的能 ...

  8. Java实现上传文件到指定服务器指定目录

    前言需求 使用freemarker生成的静态文件,统一存储在某个服务器上.本来一开始打算使用ftp实现的,奈何老连接不上,改用jsch.毕竟有现成的就很舒服,在此介绍给大家. 具体实现 引入的pom ...

  9. [ASP.NET Core 3框架揭秘] Options[1]: 配置选项的正确使用方式[上篇]

    依赖注入不仅是支撑整个ASP.NET Core框架的基石,也是开发ASP.NET Core应用采用的基本编程模式,所以依赖注入十分重要.依赖注入使我们可以将依赖的功能定义成服务,最终以一种松耦合的形式 ...

  10. js面试题之手写节流函数和防抖函数

    函数节流:不断触发一个函数后,执行第一次,只有大于设定的执行周期后才会执行第二次 /* 节流函数:fn:要被节流的函数,delay:规定的时间 */ function throttle(fn,dela ...