CF573E Bear and Bowling(6-1)
题意
做法一
考虑一种贪心(先别管对不对),设当前已选择的集合为\(A\),这是考虑该集合的补集,每个元素加进来后的增量为\(V_i\),则挑选最大的那个加入该集合
结论1:遵循上述贪心,\(\forall i,j(i<j)\),满足\(a_i>a_j\),倘若选\(j\),集合中必定包含\(i\)
归纳:
\(i,j\)间没有任何元素在\(A\)中,显然成立
假设若\(i\)加入集合,为\(k_1^{th}\),\(j\)为\(k_2^{th}\),贡献差分一下,假设先选\(j\),即\(k_2a_j-k_1a_i-sum>0\)(\(sum\)为中间被选元素和)
显然必定存在某个元素\(a'<a_j\),与假设矛盾
再来考虑这种贪心,假设固定\(A\),贪心加入\(x\),最优解不包含这个,可以用调整法简单证明将其中一个元素换成\(x\)一定不劣
当本次选取\(x\)时,\(i\in [1,x),V_i+=a_x;i\in (x,n],V_i+=a_i\),故\(V_i\)总可表示成\(k_ia_i+y_i\)的形式
具体做法
将序列分块,维护\(O(\sqrt n)\)个\((a_i,y_i)\)的凸壳,选取\(x\),对前面的块内元素的相对位置不发生影响,后面块的整体系数\(k_i+1\),本块需要重构一下
做法二
结论2:一定存在一个分界线\(k\),使得\(k\)之前都没选\(i\),而k之后都选\(i\)
即证明不存在:\(F_{i,j}=F_{i-1,j-1}+j\times a_i\ge F_{i-1,j}(1),F_{i,j+1}=F_{i-1,j+1}\ge F_{i-1,j}+(j+1)a_i(2)\)
归纳:设\(F_{i-1,j}\)没选\(i-1\),\(F_{i-1,j+1}\)选了\(i-1\)
根据\((1)\)可得\(a_{i-1}\ge a_i\),可证明不存在\(F_{i-1,j-1}+j\times a_i\ge F_{i-1,j}\)
另外两种情况也可讨论得出
还有一种证明,不过我看不太透,感兴趣的可以点这里(结论\(2\)也来源于此)
具体做法
二分出分界线,然后后面那段加上一个等差数列
CF573E Bear and Bowling(6-1)的更多相关文章
- Codeforces 639E - Bear and Paradox(二分+贪心)
Codeforces 题目传送门 & 洛谷题目传送门 原来 jxd 作业里也有我会做的题 i 了 i 了 首先这种题目的套路就是先考虑对于一个固定的 \(c\),怎样求出得分最高的策略,而类似 ...
- poj 3176 Cow Bowling(dp基础)
Description The cows don't use actual bowling balls when they go bowling. They each take a number (i ...
- DP:Cow Bowling(POJ 3176)
北大教你怎么打保龄球 题目很简单的,我就不翻译了,简单来说就是储存每一行的总数,类似于状态压缩 #include <stdio.h> #include <stdlib.h> # ...
- CF573E Bear and Bowling 贪心、分块、凸包
传送门 题解搬运工++ 先证明一个贪心做法的正确性:做以下操作若干次,每一次考虑选择没有被选到答案序列中的数加入到答案序列中对答案的贡献,设第\(i\)个位置的贡献为\(V_i\),如果最大的贡献小于 ...
- CF573E Bear and Bowling
题目 我们设\(f_{i,j}\)表示前\(i\)个数中选\(j\)个的最大值. 那么显然有\(f_{i,j}=max(f_{i-1,j},f_{i-1,j-1}+j*a_i)\). 这个东西我们首先 ...
- 【CF573E】Bear and Bowling
[CF573E]Bear and Bowling 题面 洛谷 题解 首先有一个贪心的结论: 我们一次加入每个数,对于\(\forall i\),位置\(i\)的贡献为\(V_i = k_i\times ...
- salesforce 零基础学习(三十三)通过REST方式访问外部数据以及JAVA通过rest方式访问salesforce
本篇参考Trail教程: https://developer.salesforce.com/trailhead/force_com_dev_intermediate/apex_integration_ ...
- FreeCodeCamp 高级算法(个人向)
freecodecamp 高级算法地址戳这里. freecodecamp的初级和中级算法,基本给个思路就能完成,而高级算法稍微麻烦了一点,所以我会把自己的解答思路写清楚,如果有错误或者更好的解法,欢迎 ...
- JavaScript 风格指导(Airbnb版)
JavaScript 风格指导(Airbnb版) 用更合理的方式写 JavaScript 原文 翻译自 Airbnb JavaScript Style Guide . 目录 类型 引用 对象 数组 解 ...
随机推荐
- Go语言实现:【剑指offer】斐波那契数列
该题目来源于牛客网<剑指offer>专题. 大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项(从0开始,第0项为0) n<=39 Go语言实现: 递归: ...
- Update、Insert注入技巧
title: Update.Insert注入技巧 date: 2017-10-23 18:07:57 tags: ["注入"] 审计了不少代码,再看代码的时候最多出现的就是注入,很 ...
- 《Head first设计模式》之迭代器模式
迭代器模式提供一种方法顺序访问一个聚合对象中的各个元素,而又不暴露其内部的表示. 爆炸性新闻:对象村餐厅和对象村煎饼屋合并了! 真是个好消息!现在我们可以在同一个地方,享用煎饼屋美味的煎饼早餐,和好吃 ...
- 20200104--python学习第六天
今日学习 集合 内存相关知识 深浅拷贝 内容回顾与补充 (1)列表: (a)reverse 反转 v1=[1,2,3111,32,13] print(v1) v1.reverse() print(v1 ...
- [MacOS]MacOS字体文件位置
$ cd /System/Library/Fonts $ ls Apple Braille Outline 6 Dot.ttf Noteworthy.ttc SFCompactText-Regular ...
- KVM管理工具webvirtmgr的使用
WebVirtMgr的日常配置:添加宿主机,创建虚拟机,磁盘扩容,快照等具体操作记录如下: 一.创建虚拟机 1.创建存储池 点击创建的宿主机,进入虚拟机部署界面 点击“存储池”按钮,创建存储池(即创建 ...
- Redis的“假事务”与分布式锁
关注公众号:CoderBuff,回复"redis"获取<Redis5.x入门教程>完整版PDF. <Redis5.x入门教程>目录 第一章 · 准备工作 第 ...
- F——宋飞正传(HDU3351)
题目: I’m out of stories. For years I’ve been writing stories, some rather silly, just to make simpl ...
- pyhton项目和晋江文学城数据分析项目
1.图书管理系统 图1.图书管理系统(作者信息列表页面) 图2.图书管理系统(作者信息修改页面) 2.个人博客网页设计 图3.博客(我的日记-->个人日记)页面 图4.博客(关于我--> ...
- c语言心形告白代码实现
c语言心形告白代码实现 1.彩色告白 include<stdio.h> include<math.h> include<windows.h> include< ...