显然是概率DP

我们用dp[i][j]表示队伍中有i个人,lyk的小迷妹现在排在j这个位置时的概率大小

不难列出下列转移方程:

(显然已经排到前面k个位置的时候是要加上爆炸也就是p4的概率的)


$$f[i][1]=f[i][1]*p1+f[i][i]*p2+p4$$
$$f[i][j]=f[i][j]*p1+f[i][j-1]*p2+f[i-1][j-1]*p3+p4(j∈[2,k])$$
$$f[i][j]=f[i][j]*p1+f[i][j-1]*p2+f[i-1][j-1]*p3(j∈[k+1,i])$$


这是一个从前往后递推的过程,但是十分不和谐的是:f[i][1]的递推式中出现了$f[i][i]$,显然我们要想办法把这玩意儿给消掉

先化简,把两边同类项合并了,结果是这样的:


$$f[i][1]=f[i][i]*\frac{p2}{1-p1}+\frac{p4}{1-p1}$$
$$f[i][j]=f[i][j-1]*\frac{p2}{1-p1}+f[i-1][j-1]*\frac{p3}{1-p1}+\frac{p4}{1-p1}(j∈[2,k])$$
$$f[i][j]=f[i][j-1]*\frac{p2}{1-p1}+f[i-1][j-1]*\frac{p3}{1-p1}(j∈[k+1,i])$$


由于从前往后递推,在求f[i][j]是,f[i-1][]的所有值我们已经求出来了,所以可以看做常数,p1,p2,p3,p4显然已知,也是常数

所以我们可以把这玩意为当做方程解,我们只要把f[i][i]看做未知数,在不断的迭代下去即可

大概是这个样子:


不妨令a=$\frac{p2}{1-p1}$,$b=\frac{p3}{1-p1}$,$c=\frac{p4}{1-p1}$

设$C_j=f[i-1][j-1]*c+d$

则有:$$f[i][1]=f[i][i]*a+c$$
$$f[i][2]=f[i][1]*a+C_2$$
(然后把f[i][1]代入②式,依次类推......)


最后我们把式子最后面的常数部分设成sol

显然可以得到$$f[i][i]=a^{i}*f[i][i]+sol$$

也就是说
$$f[i][i]=\frac{sol}{1-a^i}$$

这样填完所有$f[][]$的表之后这道题也就解决了qaq

不过因为空间限制,我们要压掉f[][]第一维(f[i][]的值只与f[i-1][]有关)

代码实现在这里哦~

 #include<bits/stdc++.h>
using namespace std;
inline int read(){
int ans=,f=;char chr=getchar();
while(!isdigit(chr)){if(chr=='-')f=-;chr=getchar();}
while(isdigit(chr)) {ans=(ans<<)+(ans<<)+chr-;chr=getchar();}
return ans*f;
}const int M = ;int n,m,k;
double f[][M],p1,p2,p3,p4,a,b,c,v[M],p[M];
int main(){
while(~scanf("%d%d%d%lf%lf%lf%lf",&n,&m,&k,&p1,&p2,&p3,&p4)){
if(fabs(p4)<=1e-) {puts("0.00000");continue;}//p4为0时显然不可能
a=p2/(-p1),b=p3/(-p1),c=p4/(-p1);
v[]=;for(int i=;i<=n;i++) v[i]=v[i-]*a;//预处理a的i次方
p[]=c;f[][]=p4/(-p1-p2);
for(int i=;i<=n;i++){
double sol=;
for(int j=;j<=k;j++) p[j]=f[i-&][j-]*b+c;
for(int j=k+;j<=i;j++) p[j]=f[i-&][j-]*b;//求每一个方程式的常数项
for(int j=;j<=i;j++) sol+=v[i-j]*p[j];//求最后一个式子f[i][i]=......的常数项
f[i&][i]=sol/(-v[i]);
f[i&][]=f[i&][i]*a+c;//回代消元
for(int j=;j<i;j++) f[i&][j]=f[i&][j-]*a+p[j];//回去填表
}printf("%.5lf\n",f[n&][m]);
}
return ;
}

【期望DP】[UVA1498] Activation的更多相关文章

  1. 【BZOJ-1419】Red is good 概率期望DP

    1419: Red is good Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 660  Solved: 257[Submit][Status][Di ...

  2. [NOIP2016]换教室 D1 T3 Floyed+期望DP

    [NOIP2016]换教室 D1 T3 Description 对于刚上大学的牛牛来说, 他面临的第一个问题是如何根据实际情况中情合适的课程. 在可以选择的课程中,有2n节课程安排在n个时间段上.在第 ...

  3. HDU 4336 Card Collector (期望DP+状态压缩 或者 状态压缩+容斥)

    题意:有N(1<=N<=20)张卡片,每包中含有这些卡片的概率,每包至多一张卡片,可能没有卡片.求需要买多少包才能拿到所以的N张卡片,求次数的期望. 析:期望DP,是很容易看出来的,然后由 ...

  4. 【BZOJ-4008】亚瑟王 概率与期望 + DP

    4008: [HNOI2015]亚瑟王 Time Limit: 20 Sec  Memory Limit: 512 MBSec  Special JudgeSubmit: 832  Solved: 5 ...

  5. 期望dp BZOJ3450+BZOJ4318

    BZOJ3450 概率期望DP f[i]表示到i的期望得分,g[i]表示到i的期望长度. 分三种情况转移: ① s[i]=‘x’:f[i]=f[i-1],g[i]=0 ② s[i]=‘o’:f[i]= ...

  6. HDU 4405 期望DP

    期望DP算是第一题吧...虽然巨水但把思路理理清楚总是好的.. 题意:在一个1×n的格子上掷色子,从0点出发,掷了多少前进几步,同时有些格点直接相连,即若a,b相连,当落到a点时直接飞向b点.求走到n ...

  7. POJ 2096 【期望DP】

    题意: 有n种选择,每种选择对应m种状态.每种选择发生的概率相等,每种选择中对应的每种状态发生的概率相等. 求n种选择和m种状态中每种至少发生一次的期望. 期望DP好别扭啊.要用倒推的方法. dp[i ...

  8. ZOJ 3822 Domination 期望dp

    Domination Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://acm.zju.edu.cn/onlinejudge/showProblem ...

  9. poj 2096 Collecting Bugs(期望 dp 概率 推导 分类讨论)

    Description Ivan is fond of collecting. Unlike other people who collect post stamps, coins or other ...

  10. uva11600 状压期望dp

    一般的期望dp是, dp[i] = dp[j] * p[j] + 1; 即走到下一步需要1的时间,然后加上 下一步走到目标的期望*这一步走到下一步的概率 这一题,我们将联通分块缩为一个点,因为联通块都 ...

随机推荐

  1. eclipse打包插件net.sf.fjep.fatjar

    eclipse打包插件安装 1)将net.sf.fjep.fatjar_0.0.32.jar拷贝到eclipse安装目录中的plugins目录下,然后重启eclipse即可. 软件获取方式: 链接:h ...

  2. Lua的控制流程

    一.条件语句 if语句 if语句是由一个布尔表达式作为条件判断,或者紧跟其他语句组成. if else语句 if语句可以是else搭配使用,在if条件表达式为false时执行else语句代码 if嵌套 ...

  3. ionic-CSS:ionic 单选框

    ylbtech-ionic-CSS:ionic 单选框 1.返回顶部 1. ionic 单选框 ionic 单选按钮与标准 type="radio" 的 input元素类似.以下展 ...

  4. 数据库和java Bean

    ·1. 数据库和java Bean,字段类型要一致.不一致查询不出来,但不会报错. 字段名称也一样,不一致查询不出来,但不会报错. 2. 数据库和java Bean字段的个数可以不一样,也不会包错 3 ...

  5. Neo4j使用简单例子

    Neo4j Versions Most of the examples on this page are written with Neo4j 2.0 in mind, so they skip th ...

  6. 21-5-split

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  7. Vagrant安装步骤

    Vagrant安装步骤 下载添加box镜像 vagrant box add base 远端的box地址或者本地的box文件名 建立box镜像关联 vagrant box add centos72 va ...

  8. vim 命令行模式 操作指令

      复制n行: nyy 粘贴:p 剪切(删除)n行: ndd 剪切 ( 删除 ) n个字符:nx 移动光标到第一行 : gg 移动光标到最后一行 : G 设置格式  :gg=G 返回上一次操作前(撤销 ...

  9. 利用DNSQuery 进行DNS查询

    #include <WinSock2.h> #include <WinDNS.h> #pragma comment (lib, "Dnsapi.lib") ...

  10. 深度探索C++对象模型之第一章:关于对象之关键词所引起的差异

    ————如果不是为了努力维护与C之间的兼容性,C++远比现在简单的多. 如果一个程序员渴望学习C++,但是他却发现书中没有熟悉的struct,一定会苦恼,将这个主题包含到C++里,可以提供语言转移时的 ...