在图像处理中,求解图像梯度是常用操作。

Sobel算子

Calculates the first, second, third, or mixed image derivatives using an extended Sobel operator.

Sobel 算子是一种离散性差分算子,用来计算图像像素值的一阶、二阶、三阶或混合梯度。在图像的任何一点使用此算子,将会产生对应的灰度矢量或是其法矢量。

C++: void Sobel(InputArray src, OutputArray dst, int ddepth, int dx, int dy, int ksize=, double scale=, double delta=, int borderType=BORDER_DEFAULT )
C: void cvSobel(const CvArr* src, CvArr* dst, int xorder, int yorder, int aperture_size= )

参数含义

src – 输入图像

dst – 输出结果,与输入图像具有相同的尺寸和通道数

ddepth – 输出图像的数据类型。支持以下数据类型组合

  • src.depth() = CV_8U, ddepth = -1/CV_16S/CV_32F/CV_64F
  • src.depth() = CV_16U/CV_16S, ddepth = -1/CV_32F/CV_64F
  • src.depth() = CV_32F, ddepth = -1/CV_32F/CV_64F
  • src.depth() = CV_64F, ddepth = -1/CV_64F

当ddepth=-1时,输出与输入具有相同的数据类型。当输入是8比特图像时,输出结果将是截断的导数值(in the case of 8-bit input images it will result in truncated derivatives)。

xorder – x方向求导阶数

yorder – y方向求导阶数

ksize – 卷积核的大小,只能是1/3/5/7之一(it must be 1, 3, 5, or 7)。

scale – 缩放尺度因子,默认无缩放

delta – 存储之前加到上述结果上的偏移量。

borderType – 边界插值方法,详见附录A-1。

Scharr算子

Calculates the first x- or y- image derivative using Scharr operator.

该算子参数和 Sobel 算子一致,与 Sobel 区别在于,Scharr 仅作用于大小为3的内核。具有和sobel算子一样的速度,但结果更为精确。

C++: void Scharr(InputArray src, OutputArray dst, int ddepth, int dx, int dy, double scale=, double delta=, int borderType=BORDER_DEFAULT )

参数含义

src – 输入图像

dst – 输出结果,与输入图像具有相同的尺寸和通道数

ddepth – 输出图像的数据类型,即矩阵中元素的一个通道的数据类型,这个值和 type 是相关的。例如 type 为 CV_16SC2,一个2通道的16位的有符号整数,depth是CV_16S

dx – dx=1 表示求 x 方向的一阶梯度,dx=0 表示不求 x 方向

dy – 与上类似,dy=1 表示求 y 方向的一阶梯度,dy=0 表示不求 y 方向

scale – 求导得到的值的缩放尺度因子,默认无缩放

delta – 在存储之前加到求导值上的数值,可以用于将0以下的值调整到0以上。delta=0 时表示梯度为0处结果保存为0;delta=m 时表示梯度为0处结果保存为m

borderType – 表示图像四周像素外插值方法,默认是 BORDER_DEFAULT,该参数解释见附录A-1。

附录A-1

borderType

决定在图像发生几何变换或者滤波操作(卷积)时边沿像素的处理方式

/*
Various border types, image boundaries are denoted with '|' * BORDER_REPLICATE: aaaaaa|abcdefgh|hhhhhhh
* BORDER_REFLECT: fedcba|abcdefgh|hgfedcb
* BORDER_REFLECT_101: gfedcb|abcdefgh|gfedcba
* BORDER_WRAP: cdefgh|abcdefgh|abcdefg
* BORDER_CONSTANT: iiiiii|abcdefgh|iiiiiii with some specified 'i'
*/
  • BORDER_CONSTANT 边沿像素用 i 扩展,需要设置borderValue 指定 ' i ' 值,const cv::Scalar& borderValue = cv::Scalar(0);
  • BORDER_REPLICATE,复制边界像素
  • BORDER_REFLECT,对边界对称扩展,包含对称轴处的元素
  • BORDER_REFLECT_101,以边界为对称轴对称扩展复制像素,不包含对称轴处的元素

cv::Mat 的属性

The class Mat represents an n-dimensional dense numerical single-channel or multi-channel array.
It can be used to store real or complex-valued vectors and matrices, grayscale or color images, voxel
volumes, vector fields, point clouds, tensors, histograms (though, very high-dimensional histograms
may be better stored in a SparseMat ).

Mat是用于表示一个多维的单通道或者多通道的稠密数组。能用来保存实数或复数的向量、矩阵,灰度或彩色图像,立体元素,点云,张量以及直方图(高维的直方图最好使用SparseMat保存)。总之Mat就是用来保存多维的矩阵的。

  • depth

depth属性表示矩阵中元素的一个通道的数据类型。可以根据矩阵的 type 属性来判断( S 代表 signed int,即有符号整形;U 代表 unsigned int,即无符号整形;F 代表 float,即单精度浮点型。):

对于 CV_8U/CV_8S 其 depth 为 1

对于 CV_16U/CV_16S 其 depth 为 2

对于 CV_32S/CV_32F 其 depth 为 4

对于 CV_64F 其depth 为 8

#define CV_8UC1 CV_MAKETYPE(CV_8U,1)
#define CV_8UC2 CV_MAKETYPE(CV_8U,2)
#define CV_8UC3 CV_MAKETYPE(CV_8U,3)
#define CV_8UC4 CV_MAKETYPE(CV_8U,4)
#define CV_8UC(n) CV_MAKETYPE(CV_8U,(n)) #define CV_8SC1 CV_MAKETYPE(CV_8S,1)
#define CV_8SC2 CV_MAKETYPE(CV_8S,2)
#define CV_8SC3 CV_MAKETYPE(CV_8S,3)
#define CV_8SC4 CV_MAKETYPE(CV_8S,4)
#define CV_8SC(n) CV_MAKETYPE(CV_8S,(n)) #define CV_16UC1 CV_MAKETYPE(CV_16U,1)
#define CV_16UC2 CV_MAKETYPE(CV_16U,2)
#define CV_16UC3 CV_MAKETYPE(CV_16U,3)
#define CV_16UC4 CV_MAKETYPE(CV_16U,4)
#define CV_16UC(n) CV_MAKETYPE(CV_16U,(n)) #define CV_16SC1 CV_MAKETYPE(CV_16S,1)
#define CV_16SC2 CV_MAKETYPE(CV_16S,2)
#define CV_16SC3 CV_MAKETYPE(CV_16S,3)
#define CV_16SC4 CV_MAKETYPE(CV_16S,4)
#define CV_16SC(n) CV_MAKETYPE(CV_16S,(n)) #define CV_32SC1 CV_MAKETYPE(CV_32S,1)
#define CV_32SC2 CV_MAKETYPE(CV_32S,2)
#define CV_32SC3 CV_MAKETYPE(CV_32S,3)
#define CV_32SC4 CV_MAKETYPE(CV_32S,4)
#define CV_32SC(n) CV_MAKETYPE(CV_32S,(n)) #define CV_32FC1 CV_MAKETYPE(CV_32F,1)
#define CV_32FC2 CV_MAKETYPE(CV_32F,2)
#define CV_32FC3 CV_MAKETYPE(CV_32F,3)
#define CV_32FC4 CV_MAKETYPE(CV_32F,4)
#define CV_32FC(n) CV_MAKETYPE(CV_32F,(n)) #define CV_64FC1 CV_MAKETYPE(CV_64F,1)
#define CV_64FC2 CV_MAKETYPE(CV_64F,2)
#define CV_64FC3 CV_MAKETYPE(CV_64F,3)
#define CV_64FC4 CV_MAKETYPE(CV_64F,4)
#define CV_64FC(n) CV_MAKETYPE(CV_64F,(n))

type definition


参考资料

[1] Image Filtering

[2] OpenCV2:Mat属性type,depth,step

[3] Sobel Derivatives

[4] opencv边缘检测sobel算子

[5] python opencv学习(六)图像梯度计算

OpenCV4系列之图像梯度和边缘检测的更多相关文章

  1. opencv-学习笔记(6)图像梯度Sobel以及canny边缘检测

    opencv-学习笔记(6)图像梯度Sobel以及canny边缘检测 这章讲了 sobel算子 scharr算子 Laplacion拉普拉斯算子 图像深度问题 Canny检测 图像梯度 sobel算子 ...

  2. 3. OpenCV-Python——图像梯度算法、边缘检测、图像金字塔与轮廓检测、直方图与傅里叶变换

    一.图像梯度算法 1.图像梯度-Sobel算子 dst = cv2.Sobel(src, ddepth, dx, dy, ksize) ddepth:图像的深度 dx和dy分别表示水平和竖直方向 ks ...

  3. Python+OpenCV图像处理(十二)—— 图像梯度

    简介:图像梯度可以把图像看成二维离散函数,图像梯度其实就是这个二维离散函数的求导. Sobel算子是普通一阶差分,是基于寻找梯度强度.拉普拉斯算子(二阶差分)是基于过零点检测.通过计算梯度,设置阀值, ...

  4. opencv学习笔记(六)---图像梯度

    图像梯度的算法有很多方法:sabel算子,scharr算子,laplacian算子,sanny边缘检测(下个随笔)... 这些算子的原理可参考:https://blog.csdn.net/poem_q ...

  5. 14、OpenCV实现图像的空间滤波——图像锐化及边缘检测

    1.图像锐化理论基础 1.锐化的概念 图像锐化的目的是使模糊的图像变得清晰起来,主要用于增强图像的灰度跳变部分,这一点与图像平滑对灰度跳变的抑制正好相反.而且从算子可以看出来,平滑是基于对图像领域的加 ...

  6. OpenCV常用基本处理函数(6)图像梯度

    形态学转换 腐蚀 img = cv2.imread() kernel = np.ones((,),np.uint8) erosion = cv2.erode(img,kernel,iterations ...

  7. 从视频文件中读入数据-->将数据转换为灰度图-->对图像做canny边缘检测-->将这三个结构显示在一个图像中

    //从视频文件中读入数据-->将数据转换为灰度图-->对图像做canny边缘检测-->将这三个结构显示在一个图像中 //作者:sandy //时间:2015-10-10 #inclu ...

  8. 『cs231n』作业3问题3选讲_通过代码理解图像梯度

    Saliency Maps 这部分想探究一下 CNN 内部的原理,参考论文 Deep Inside Convolutional Networks: Visualising Image Classifi ...

  9. OpenCV学习笔记(10)——图像梯度

    学习图像梯度,图像边界等 梯度简单来说就是求导. OpenCV提供了三种不同的梯度滤波器,或者说高通滤波器:Sobel,Scharr和Lapacian.Sobel,Scharr其实就是求一阶或二阶导. ...

随机推荐

  1. spring boot 整合 swagger2

    swagger2为了更好的管理api文档接口 swagger构建的api文档如下,清晰,避免了手写api诸多痛点 一,添加依赖 <!--swagger2的官方依赖--> <depen ...

  2. NIO&AIO编程模型

    NIO线程模型 什么是NIO线程模型? 上图是NIO的线程模型,  基于select实现,   这种线程模型的特点:  多条channel通过一个选择器和单挑线程绑定, 并且在这种编程模型中, Cha ...

  3. windows命令行(终端)怎么复制粘贴

    原文地址:https://jingyan.baidu.com/article/335530daf96f3a19cb41c3f4.html 终端打开后,我们可以简单的ping一下,查看一下连接地址   ...

  4. Ubuntu下配置GitHub

    使用GitHub进行代码托管是如此地方便,原来一直在Windows下进行操作,非常的简单,由于其图形化界面将所有这些都隐藏起来了. 还是不得不吐槽一下自己,非得将自己的系统装为Ubuntu... 言归 ...

  5. Visual studio之C#的一些常见问题01switch case常量

    switch() {case CONST: break;}语句中,case后面的常量表达方法在C/C++中,switch() {case CONST: break;}语句中的CONST常常使用宏定义来 ...

  6. Client API Object Model - Xrm object(3.4)

    Xrm对象是全局可用的,可以在代码中使用,而不必在客户机API中使用执行上下文. Xrm 包括了以下这些namespace Xrm 的官方文档 https://docs.microsoft.com/e ...

  7. 解决Android studio遇见Could not find common.jar (android.arch.core:common:1.0.0).错误

    不知道怎么回事就发生的错误,翻墙找到的解决方法,如下: Error:Could not find common.jar (android.arch.core:common:1.0.0).Searche ...

  8. Python3基础之初识Python

    Python介绍 python的创始人为吉多·范罗苏姆(Guido van Rossum).1989年的圣诞节期间,吉多·范罗苏姆为了在阿姆斯特丹打发时间,决心开发一个新的脚本解释程序, 作为ABC语 ...

  9. [Ubuntu]解决"系统的网络服务与此版本的网络管理器不兼容"提示

    先贴方法: sudo -s ' 获取root权限 apt-get install network-manager ' 重装网络管理器 如果系统提示有升级包可用则安装即可. 开机后,右上角没有网络图标. ...

  10. vue-cli3中引入图片的几种方式和注意事项

    如果你是在数据中引入图片,他是从项目中引入的应该按第一种方式引入 如果不是在数据中引入图片,按第二种方式引入