OpenCV4系列之图像梯度和边缘检测
在图像处理中,求解图像梯度是常用操作。
Sobel算子
Calculates the first, second, third, or mixed image derivatives using an extended Sobel operator.Sobel 算子是一种离散性差分算子,用来计算图像像素值的一阶、二阶、三阶或混合梯度。在图像的任何一点使用此算子,将会产生对应的灰度矢量或是其法矢量。
C++: void Sobel(InputArray src, OutputArray dst, int ddepth, int dx, int dy, int ksize=, double scale=, double delta=, int borderType=BORDER_DEFAULT )
C: void cvSobel(const CvArr* src, CvArr* dst, int xorder, int yorder, int aperture_size= )参数含义
src – 输入图像
dst – 输出结果,与输入图像具有相同的尺寸和通道数
ddepth – 输出图像的数据类型。支持以下数据类型组合
- src.depth() = CV_8U, ddepth = -1/CV_16S/CV_32F/CV_64F
- src.depth() = CV_16U/CV_16S, ddepth = -1/CV_32F/CV_64F
- src.depth() = CV_32F, ddepth = -1/CV_32F/CV_64F
- src.depth() = CV_64F, ddepth = -1/CV_64F
当ddepth=-1时,输出与输入具有相同的数据类型。当输入是8比特图像时,输出结果将是截断的导数值(in the case of 8-bit input images it will result in truncated derivatives)。
xorder – x方向求导阶数
yorder – y方向求导阶数
ksize – 卷积核的大小,只能是1/3/5/7之一(it must be 1, 3, 5, or 7)。
scale – 缩放尺度因子,默认无缩放
delta – 存储之前加到上述结果上的偏移量。
borderType – 边界插值方法,详见附录A-1。
Scharr算子
Calculates the first x- or y- image derivative using Scharr operator.该算子参数和 Sobel 算子一致,与 Sobel 区别在于,Scharr 仅作用于大小为3的内核。具有和sobel算子一样的速度,但结果更为精确。
C++: void Scharr(InputArray src, OutputArray dst, int ddepth, int dx, int dy, double scale=, double delta=, int borderType=BORDER_DEFAULT )参数含义
src – 输入图像
dst – 输出结果,与输入图像具有相同的尺寸和通道数
ddepth – 输出图像的数据类型,即矩阵中元素的一个通道的数据类型,这个值和 type 是相关的。例如 type 为 CV_16SC2,一个2通道的16位的有符号整数,depth是CV_16S
dx – dx=1 表示求 x 方向的一阶梯度,dx=0 表示不求 x 方向
dy – 与上类似,dy=1 表示求 y 方向的一阶梯度,dy=0 表示不求 y 方向
scale – 求导得到的值的缩放尺度因子,默认无缩放
delta – 在存储之前加到求导值上的数值,可以用于将0以下的值调整到0以上。delta=0 时表示梯度为0处结果保存为0;delta=m 时表示梯度为0处结果保存为m
borderType – 表示图像四周像素外插值方法,默认是 BORDER_DEFAULT,该参数解释见附录A-1。
附录A-1
borderType
决定在图像发生几何变换或者滤波操作(卷积)时边沿像素的处理方式
/*
Various border types, image boundaries are denoted with '|' * BORDER_REPLICATE: aaaaaa|abcdefgh|hhhhhhh
* BORDER_REFLECT: fedcba|abcdefgh|hgfedcb
* BORDER_REFLECT_101: gfedcb|abcdefgh|gfedcba
* BORDER_WRAP: cdefgh|abcdefgh|abcdefg
* BORDER_CONSTANT: iiiiii|abcdefgh|iiiiiii with some specified 'i'
*/
- BORDER_CONSTANT 边沿像素用 i 扩展,需要设置borderValue 指定 ' i ' 值,const cv::Scalar& borderValue = cv::Scalar(0);
- BORDER_REPLICATE,复制边界像素
- BORDER_REFLECT,对边界对称扩展,包含对称轴处的元素
- BORDER_REFLECT_101,以边界为对称轴对称扩展复制像素,不包含对称轴处的元素
cv::Mat 的属性
The class Mat represents an n-dimensional dense numerical single-channel or multi-channel array.
It can be used to store real or complex-valued vectors and matrices, grayscale or color images, voxel
volumes, vector fields, point clouds, tensors, histograms (though, very high-dimensional histograms
may be better stored in a SparseMat ).Mat是用于表示一个多维的单通道或者多通道的稠密数组。能用来保存实数或复数的向量、矩阵,灰度或彩色图像,立体元素,点云,张量以及直方图(高维的直方图最好使用SparseMat保存)。总之Mat就是用来保存多维的矩阵的。
- depth
depth属性表示矩阵中元素的一个通道的数据类型。可以根据矩阵的 type 属性来判断( S 代表 signed int,即有符号整形;U 代表 unsigned int,即无符号整形;F 代表 float,即单精度浮点型。):
对于 CV_8U/CV_8S 其 depth 为 1
对于 CV_16U/CV_16S 其 depth 为 2
对于 CV_32S/CV_32F 其 depth 为 4
对于 CV_64F 其depth 为 8
#define CV_8UC1 CV_MAKETYPE(CV_8U,1)
#define CV_8UC2 CV_MAKETYPE(CV_8U,2)
#define CV_8UC3 CV_MAKETYPE(CV_8U,3)
#define CV_8UC4 CV_MAKETYPE(CV_8U,4)
#define CV_8UC(n) CV_MAKETYPE(CV_8U,(n)) #define CV_8SC1 CV_MAKETYPE(CV_8S,1)
#define CV_8SC2 CV_MAKETYPE(CV_8S,2)
#define CV_8SC3 CV_MAKETYPE(CV_8S,3)
#define CV_8SC4 CV_MAKETYPE(CV_8S,4)
#define CV_8SC(n) CV_MAKETYPE(CV_8S,(n)) #define CV_16UC1 CV_MAKETYPE(CV_16U,1)
#define CV_16UC2 CV_MAKETYPE(CV_16U,2)
#define CV_16UC3 CV_MAKETYPE(CV_16U,3)
#define CV_16UC4 CV_MAKETYPE(CV_16U,4)
#define CV_16UC(n) CV_MAKETYPE(CV_16U,(n)) #define CV_16SC1 CV_MAKETYPE(CV_16S,1)
#define CV_16SC2 CV_MAKETYPE(CV_16S,2)
#define CV_16SC3 CV_MAKETYPE(CV_16S,3)
#define CV_16SC4 CV_MAKETYPE(CV_16S,4)
#define CV_16SC(n) CV_MAKETYPE(CV_16S,(n)) #define CV_32SC1 CV_MAKETYPE(CV_32S,1)
#define CV_32SC2 CV_MAKETYPE(CV_32S,2)
#define CV_32SC3 CV_MAKETYPE(CV_32S,3)
#define CV_32SC4 CV_MAKETYPE(CV_32S,4)
#define CV_32SC(n) CV_MAKETYPE(CV_32S,(n)) #define CV_32FC1 CV_MAKETYPE(CV_32F,1)
#define CV_32FC2 CV_MAKETYPE(CV_32F,2)
#define CV_32FC3 CV_MAKETYPE(CV_32F,3)
#define CV_32FC4 CV_MAKETYPE(CV_32F,4)
#define CV_32FC(n) CV_MAKETYPE(CV_32F,(n)) #define CV_64FC1 CV_MAKETYPE(CV_64F,1)
#define CV_64FC2 CV_MAKETYPE(CV_64F,2)
#define CV_64FC3 CV_MAKETYPE(CV_64F,3)
#define CV_64FC4 CV_MAKETYPE(CV_64F,4)
#define CV_64FC(n) CV_MAKETYPE(CV_64F,(n))type definition
参考资料
[1] Image Filtering
[2] OpenCV2:Mat属性type,depth,step
OpenCV4系列之图像梯度和边缘检测的更多相关文章
- opencv-学习笔记(6)图像梯度Sobel以及canny边缘检测
opencv-学习笔记(6)图像梯度Sobel以及canny边缘检测 这章讲了 sobel算子 scharr算子 Laplacion拉普拉斯算子 图像深度问题 Canny检测 图像梯度 sobel算子 ...
- 3. OpenCV-Python——图像梯度算法、边缘检测、图像金字塔与轮廓检测、直方图与傅里叶变换
一.图像梯度算法 1.图像梯度-Sobel算子 dst = cv2.Sobel(src, ddepth, dx, dy, ksize) ddepth:图像的深度 dx和dy分别表示水平和竖直方向 ks ...
- Python+OpenCV图像处理(十二)—— 图像梯度
简介:图像梯度可以把图像看成二维离散函数,图像梯度其实就是这个二维离散函数的求导. Sobel算子是普通一阶差分,是基于寻找梯度强度.拉普拉斯算子(二阶差分)是基于过零点检测.通过计算梯度,设置阀值, ...
- opencv学习笔记(六)---图像梯度
图像梯度的算法有很多方法:sabel算子,scharr算子,laplacian算子,sanny边缘检测(下个随笔)... 这些算子的原理可参考:https://blog.csdn.net/poem_q ...
- 14、OpenCV实现图像的空间滤波——图像锐化及边缘检测
1.图像锐化理论基础 1.锐化的概念 图像锐化的目的是使模糊的图像变得清晰起来,主要用于增强图像的灰度跳变部分,这一点与图像平滑对灰度跳变的抑制正好相反.而且从算子可以看出来,平滑是基于对图像领域的加 ...
- OpenCV常用基本处理函数(6)图像梯度
形态学转换 腐蚀 img = cv2.imread() kernel = np.ones((,),np.uint8) erosion = cv2.erode(img,kernel,iterations ...
- 从视频文件中读入数据-->将数据转换为灰度图-->对图像做canny边缘检测-->将这三个结构显示在一个图像中
//从视频文件中读入数据-->将数据转换为灰度图-->对图像做canny边缘检测-->将这三个结构显示在一个图像中 //作者:sandy //时间:2015-10-10 #inclu ...
- 『cs231n』作业3问题3选讲_通过代码理解图像梯度
Saliency Maps 这部分想探究一下 CNN 内部的原理,参考论文 Deep Inside Convolutional Networks: Visualising Image Classifi ...
- OpenCV学习笔记(10)——图像梯度
学习图像梯度,图像边界等 梯度简单来说就是求导. OpenCV提供了三种不同的梯度滤波器,或者说高通滤波器:Sobel,Scharr和Lapacian.Sobel,Scharr其实就是求一阶或二阶导. ...
随机推荐
- java 类初识
一.定义 成员变量 成员方法 注意: 1.成员变量有默认值,是全局变量 2.成员方法,不需要使用static 3.成员变量的默认值 整型 0 浮点型 0.0 引用数据类型 null 二.使用 1.导包 ...
- 客户端TNSPING通 连接出现ORA-12514错误
ORA-12514: TNS: 监听程序当前无法识别连接描述符中请求的服务,这是一个经常遇到的问题,可以按照以下步骤一步步解决 1.使用tnsping检测 tnsping可判断出以下两点(1)判断网络 ...
- 什么是“跑面”呢? - ERSS耳斯百科:您的随身移动百科
跑面 [pǎo miàn] 跑面,是一个汉语词汇,拼音为pǎo miàn,英文名为Run-Noodles,最基本解释为人跑步去吃面,其意义还有多重深层解释. 中文名:跑面 英文名:Run-Noodle ...
- Qt常用UI控件读取、写入方法
本文用途:快速备忘,方便调用,写熟了自然就记下了. [1.标签label] 读取:ui->label->text() 写入:ui->label->setText("p ...
- VLC for CentOS7
https://blog.csdn.net/qiuyoujie/article/details/78486947 http://elearning.wsldp.com/pcmagazine/insta ...
- 模块化系列教程 | 深入源码分析阿里JarsLink1.0模块化框架
1. 概述 1.1 模块动态加载卸载主流程 2. 模块动态加载 2.1 模块加载源码分析 2.1.1 AbstractModuleRefreshScheduler 2.1.2 ModuleLoader ...
- .Net Core初识以及启动配置
.net程序员为什么要学习.net core .Net Core 是.Net的未来,微软在19年 5月已经明确说明,未来只有.Net 5(=.NET Core vNext),.Net 5是.net c ...
- css的选择器及它的种类特性?
今天主要说的是选择器的基础, 首先看,选择器的优先级:!important > 行间样式 > id选择器 > class 选择器 == 属性选择器 > 标签选择器 > 通 ...
- what is muxing and demuxing
They're short for multiplexing and demultiplexing. Multiplexing means combining different types of d ...
- POJ_3450_KMP
http://poj.org/problem?id=3450 直接暴力枚举第一行的每一个字串,在下面的字符串中查找就行了,注意不符合就及时break. 然后试了一下strstr,发现效率是KMP的3- ...