hive之于数据民工,就如同锄头之于农民伯伯。hive用的好,才能从地里(数据库)里挖出更多的数据来。

用过hive的朋友,我想或多或少都有类似的经历:一天下来,没跑几次hive,就到下班时间了。

hive在极大数据或者数据不平衡等情况下,表现往往一般,因此也出现了presto、spark-sql等替代品。今天不谈其它,就来说说关于hive,个人的一点心得。

一. 表连接优化

1.  将大表放后头

Hive假定查询中最后的一个表是大表。它会将其它表缓存起来,然后扫描最后那个表。

因此通常需要将小表放前面,或者标记哪张表是大表:/*streamtable(table_name) */

2. 使用相同的连接键

当对3个或者更多个表进行join连接时,如果每个on子句都使用相同的连接键的话,那么只会产生一个MapReduce job。

3. 尽量尽早地过滤数据

减少每个阶段的数据量,对于分区表要加分区,同时只选择需要使用到的字段。

4. 尽量原子化操作

尽量避免一个SQL包含复杂逻辑,可以使用中间表来完成复杂的逻辑

二. 用insert into替换union all

如果union all的部分个数大于2,或者每个union部分数据量大,应该拆成多个insert into 语句,实际测试过程中,执行时间能提升50%

如:

insert overwite table tablename partition (dt= ....)  

select ..... from ( select ... from A

union all  

select ... from B  union all select ... from C ) R  

where ...;

可以改写为:

insert into table tablename partition (dt= ....) select .... from A WHERE ...; insert into table tablename partition (dt= ....) select .... from B  WHERE ...; insert into table tablename partition (dt= ....) select .... from C WHERE ...;

三.  order by & sort by

order by : 对查询结果进行全局排序,消耗时间长。需要 set hive.mapred.mode=nostrict

sort by : 局部排序,并非全局有序,提高效率。

四. transform+python

一种嵌入在hive取数流程中的自定义函数,通过transform语句可以把在hive中不方便实现的功能在python中实现,然后写入hive表中。

语法:

select transform({column names1})

using '**.py'

as {column names2}

from {table name}

如果除python脚本外还有其它依赖资源,可以使用ADD ARVHIVE

五. limit 语句快速出结果

一般情况下,Limit语句还是需要执行整个查询语句,然后再返回部分结果。

有一个配置属性可以开启,避免这种情况---对数据源进行抽样

hive.limit.optimize.enable=true --- 开启对数据源进行采样的功能

hive.limit.row.max.size --- 设置最小的采样容量

hive.limit.optimize.limit.file --- 设置最大的采样样本数

缺点:有可能部分数据永远不会被处理到

六. 本地模式

对于小数据集,为查询触发执行任务消耗的时间>实际执行job的时间,因此可以通过本地模式,在单台机器上(或某些时候在单个进程上)处理所有的任务。

set oldjobtracker=${hiveconf:mapred.job.tracker};

set mapred.job.tracker=local;  

set marped.tmp.dir=/home/edward/tmp; sql 语句  set mapred.job.tracker=${oldjobtracker};

-- 可以通过设置属性hive.exec.mode.local.auto的值为true,来让hve在适当的时候自动启动这个优化,也可以将这个配置写在$HOME/.hiverc文件中。

-- 当一个job满足如下条件才能真正使用本地模式:

1.job的输入数据大小必须小于参数:hive.exec.mode.local.auto.inputbytes.max(默认128MB)

2.job的map数必须小于参数:hive.exec.mode.local.auto.tasks.max(默认4)

3.job的reduce数必须为0或者1

可用参数hive.mapred.local.mem(默认0)控制child jvm使用的最大内存数。

七. 并行执行

hive会将一个查询转化为一个或多个阶段,包括:MapReduce阶段、抽样阶段、合并阶段、limit阶段等。默认情况下,一次只执行一个阶段。 不过,如果某些阶段不是互相依赖,是可以并行执行的。

set hive.exec.parallel=true,可以开启并发执行。

set hive.exec.parallel.thread.number=16; //同一个sql允许最大并行度,默认为8。

会比较耗系统资源。

八. 调整mapper和reducer的个数

1 Map阶段优化

map个数的主要的决定因素有: input的文件总个数,input的文件大小,集群设置的文件块大小(默认128M,不可自定义)。

举例:

a) 假设input目录下有1个文件a,大小为780M,那么hadoop会将该文件a分隔成7个块(6个128m的块和1个12m的块),从而产生7个map数

b) 假设input目录下有3个文件a,b,c,大小分别为10m,20m,130m,那么hadoop会分隔成4个块(10m,20m,128m,2m),从而产生4个map数

即,如果文件大于块大小(128m),那么会拆分,如果小于块大小,则把该文件当成一个块。

map执行时间:map任务启动和初始化的时间+逻辑处理的时间。

1)减少map数

若有大量小文件(小于128M),会产生多个map,处理方法是:

set mapred.max.split.size=100000000; set mapred.min.split.size.per.node=100000000; set mapred.min.split.size.per.rack=100000000;

-- 前面三个参数确定合并文件块的大小,大于文件块大小128m的,按照128m来分隔,小于128m,大于100m的,按照100m来分隔,把那些小于100m的(包括小文件和分隔大文件剩下的)进行合并

 set hive.input.format=org.apache.hadoop.hive.ql.io.CombineHiveInputFormat; -- 执行前进行小文件合并 2)增加map数

当input的文件都很大,任务逻辑复杂,map执行非常慢的时候,可以考虑增加Map数,来使得每个map处理的数据量减少,从而提高任务的执行效率。

set mapred.reduce.tasks=?

2 Reduce阶段优化

调整方式:

-- set mapred.reduce.tasks=?

-- set hive.exec.reducers.bytes.per.reducer = ?

一般根据输入文件的总大小,用它的estimation函数来自动计算reduce的个数:reduce个数 = InputFileSize / bytes per reducer

九.严格模式

set hive.marped.mode=strict ------ 防止用户执行那些可能意想不到的不好的影响的查询

-- 分区表,必须选定分区范围

-- 对于使用order by的查询,要求必须使用limit语句。因为order by为了执行排序过程会将所有的结果数据分发到同一个reducer中进行处理。

-- 限制笛卡尔积查询:两张表join时必须有on语句

十.数据倾斜

表现:任务进度长时间维持在99%(或100%),查看任务监控页面,发现只有少量(1个或几个)reduce子任务未完成。因为其处理的数据量和其他reduce差异过大。

单一reduce的记录数与平均记录数差异过大,通常可能达到3倍甚至更多。 最长时长远大于平均时长。

原因

1)、key分布不均匀

2)、业务数据本身的特性

3)、建表时考虑不周

4)、某些SQL语句本身就有数据倾斜

关键词 情形 后果
join 其中一个表较小,但是key集中 分发到某一个或几个Reduce上的数据远高于平均值
join 大表与大表,但是分桶的判断字段0值或空值过多 这些空值都由一个reduce处理,灰常慢
group by group by 维度过小,某值的数量过多 处理某值的reduce灰常耗时
count distinct 某特殊值过多 处理此特殊值reduce耗时

解决方案:

参数调节

hive.map.aggr=true

参考文献:

1. 《hive编程指南》Edward Capriolo

对数据感兴趣的小伙伴,欢迎交流,微信公共号:一白侃数

数据分析利器之hive优化十大原则的更多相关文章

  1. 优秀API设计的十大原则

    优秀API设计的十大原则 2015-09-23    分类:编程开发.设计模式.首页精华暂无人评论 分享到:更多4 二十万年薪PHP工程师培养计划 成为被疯抢的Android牛人 风中叶讲Java重难 ...

  2. MySQL优化十大技巧

    转自:https://m.2cto.com/database/201701/557910.html MYSQL优化主要分为以下四大方面: 设计:存储引擎,字段类型,范式与逆范式 功能:索引,缓存,分区 ...

  3. SQL语句常见优化十大案例

    1.慢SQL消耗了70%~90%的数据库CPU资源: 2.SQL语句独立于程序设计逻辑,相对于对程序源代码的优化,对SQL语句的优化在时间成本和风险上的代价都很低:3.SQL语句可以有不同的写法: 1 ...

  4. IIS使用十大原则,(IIS过期时间,IIS缓存设置) 【转载】

    1. 自定义错误页虽然自定义错误页很简单,但只有少数管理员有效地利用了它.管理员可以在MMC中将HTTP错误信息映像到服务器上的绝对URL或是某个文件,更为详细的信息可以在这里找到.如果你嫌这太麻烦, ...

  5. 大数据技术之_08_Hive学习_04_压缩和存储(Hive高级)+ 企业级调优(Hive优化)

    第8章 压缩和存储(Hive高级)8.1 Hadoop源码编译支持Snappy压缩8.1.1 资源准备8.1.2 jar包安装8.1.3 编译源码8.2 Hadoop压缩配置8.2.1 MR支持的压缩 ...

  6. 大数据并行计算利器之MPI/OpenMP

    大数据集群计算利器之MPI/OpenMP ---以连通域标记算法并行化为例 1 背景 图像连通域标记算法是从一幅栅格图像(通常为二值图像)中,将互相邻接(4邻接或8邻接)的具有非背景值的像素集合提取出 ...

  7. 大数据开发实战:Hive优化实战3-大表join大表优化

    5.大表join大表优化 如果Hive优化实战2中mapjoin中小表dim_seller很大呢?比如超过了1GB大小?这种就是大表join大表的问题.首先引入一个具体的问题场景,然后基于此介绍各自优 ...

  8. 大数据开发实战:Hive优化实战1-数据倾斜及join无关的优化

    Hive SQL的各种优化方法基本 都和数据倾斜密切相关. Hive的优化分为join相关的优化和join无关的优化,从项目的实际来说,join相关的优化占了Hive优化的大部分内容,而join相关的 ...

  9. Hive优化-大表join大表优化

    Hive优化-大表join大表优化 5.大表join大表优化 如果Hive优化实战2中mapjoin中小表dim_seller很大呢?比如超过了1GB大小?这种就是大表join大表的问题.首先引入一个 ...

随机推荐

  1. 【问题】C4D中设置了界面颜色,如何恢复默认?

    由于C4D没有恢复默认设置的选项,恢复默认的时候比较麻烦,这里简单删除一下配置文件就好了. 1.打开C4D设置,点击下面的[打开配置文件夹],并关掉C4D. (即C:\Users\你的用户名\AppD ...

  2. JS Array.filter()方法

    1.filter()接收的函数可以有多个参数.通常我们只使用第一个参数,第二参数和第三个参数表示元素的位置和数组本身: //去重 var arr = ["1", "2&q ...

  3. TP3.2整合uplodify文件上传

    HTML中:<style>#img_upload-queue{width:120px;float:left;} /*uploadify的上传进度条样式,前面的img_upload是根据上传 ...

  4. k8s dockerk个人学习(1)

    虚拟机部署k8s 1. 创建虚拟机 虚拟机用的是virtualBox和vagrant工具,百度安装virtualBox和vagrant 创建vagrant目录并创建文件Vagrantfile内容为 V ...

  5. JavaScript原型继承工作原理

    原型继承的定义 当你阅读关于JS原型继承的解释时,你时常会看到以下这段文字: 当查找一个对象的属性时,JavaScript 会向上遍历原型链,直到找到给定名称的属性为止.——出自JavaScript秘 ...

  6. 编译libmad库

    libmad是一个开源的音频解码库,下面说说关于这个库工程的编译过程: 1.首先从网上下载libmad开源库,自己百度就能够找到关于这个库的下载链接地址,我这里提供一个: http://downloa ...

  7. 一个方便查看数据库转换rest/graphql api 的开源软件的github 项目

    https://github.com/dbohdan/automatic-api 是一个不错的github 知识项目,帮助我们 列出了,常见的的数据库可以直接转换为rest/graphql api 的 ...

  8. Microsoft Dynamics CRM 2011 配置好的IFD环境 怎么制作证书?

    一.CRM2011 IFD怎么制作证书? 配置好的IFD环境里面:打开开始—运行 1.输入: mmc(微软管理控制台) 出现: 2. 出现: 3.添加/删除管理单元,如图: 4.添加证书 5. 6. ...

  9. golang cannot assign to

    问题: # command-line-arguments .\example.go:22: cannot assign to m.V.(BasicMessage).Length 想在函数中修改inte ...

  10. NSWindow添加NSViewController

    大概这样,笔记一下,防止忘记 - (void)applicationDidFinishLaunching:(NSNotification *)aNotification { MyViewControl ...