Mass Change Queries CodeForces - 911G (线段树合并)
大意: 给定序列, 每次操作将区间[l,r]中的x全改为y, 最后输出序列
权值范围比较小, 对每个权值开一颗线段树, 每次将x合并到y上即可
#include <iostream>
#include <algorithm>
#include <cstdio>
#define REP(i,a,n) for(int i=a;i<=n;++i)
#define mid (l+r>>1)
#define lc (o<<1)
#define rc (lc|1) using namespace std;
typedef long long ll; const int N = 2e5+10;
int a[N], n, m, t;
int rt[110], tot, ql, qr, now;
struct _ {int l,r;}v[N<<5]; void ins(int &o, int l, int r, int pos) {
if (!o) o=++tot;
if (l==r) return;
if (mid>=pos) ins(v[o].l,l,mid,pos);
else ins(v[o].r,mid+1,r,pos);
} int merge(int x, int y) {
if (!x||!y) return x^y;
v[x].l = merge(v[x].l,v[y].l);
v[x].r = merge(v[x].r,v[y].r);
return x;
} void update(int &x, int &y, int l, int r) {
if (!x) return;
if (ql<=l&&r<=qr) return y=merge(x,y),void(x=0);
if (!y) y=++tot;
if (mid>=ql) update(v[x].l,v[y].l,l,mid);
if (mid<qr) update(v[x].r,v[y].r,mid+1,r);
} void dfs(int o, int l, int r) {
if (!o) return;
if (l==r) return void(a[l]=now);
dfs(v[o].l,l,mid),dfs(v[o].r,mid+1,r);
} int main() {
scanf("%d", &n);
REP(i,1,n) {
int t;
scanf("%d", &t);
ins(rt[t],1,n,i);
}
scanf("%d", &m);
while (m--) {
int x, y;
scanf("%d%d%d%d", &ql, &qr, &x, &y);
if (x!=y) update(rt[x],rt[y],1,n);
}
REP(i,1,100) now=i,dfs(rt[i],1,n);
REP(i,1,n) printf("%d ",a[i]);
puts("");
}
Mass Change Queries CodeForces - 911G (线段树合并)的更多相关文章
- Mass Change Queries Codeforces - 911G
https://codeforces.com/contest/911/problem/G 没想到线段树合并还能这么搞.. 对每个权值建一个线段树(动态开点),如果权值为k的线段树上第i位为1,那么表示 ...
- Alyona and a tree CodeForces - 739B (线段树合并)
大意: 给定有根树, 每个点$x$有权值$a_x$, 对于每个点$x$, 求出$x$子树内所有点$y$, 需要满足$dist(x,y)<=a_y$. 刚开始想错了, 直接打线段树合并了..... ...
- Recursive Queries CodeForces - 1117G (线段树)
题面: 刚开始想复杂了, 还以为是个笛卡尔树.... 实际上我们发现, 对于询问(l,r)每个点的贡献是$min(r,R[i])-max(l,L[i])+1$ 数据范围比较大在线树套树的话明显过不了, ...
- codeforces 893F - Physical Education Lessons 动态开点线段树合并
https://codeforces.com/contest/893/problem/F 题意: 给一个有根树, 多次查询,每次查询对于$x$i点的子树中,距离$x$小于等于$k$的所有点中权值最小的 ...
- Codeforces 671D Roads in Yusland [树形DP,线段树合并]
洛谷 Codeforces 这是一个非正解,被正解暴踩,但它还是过了. 思路 首先很容易想到DP. 设\(dp_{x,i}\)表示\(x\)子树全部被覆盖,而且向上恰好延伸到\(dep=i\)的位置, ...
- Codeforces 666E Forensic Examination SAM or SA+线段树合并
E. Forensic Examination http://codeforces.com/problemset/problem/666/E 题目大意:给模式串S以及m个特殊串,q个询问,询问S的子串 ...
- [Codeforces 266E]More Queries to Array...(线段树+二项式定理)
[Codeforces 266E]More Queries to Array...(线段树+二项式定理) 题面 维护一个长度为\(n\)的序列\(a\),\(m\)个操作 区间赋值为\(x\) 查询\ ...
- codeforces 600E E. Lomsat gelral (线段树合并)
codeforces 600E E. Lomsat gelral 传送门:https://codeforces.com/contest/600/problem/E 题意: 给你一颗n个节点的树,树上的 ...
- 【Codeforces 1037H】Security(SAM & 线段树合并)
Description 给出一个字符串 \(S\). 给出 \(Q\) 个操作,给出 \(L, R, T\),求字典序最小的 \(S_1\),使得 \(S^\prime\) 为\(S[L..R]\) ...
随机推荐
- R 简明教程
R 是一门统计语言.它有很多数据分析和挖掘程序包.可以用来统计.分析和制图. 你也可以在 LaTeX 文档中运行 R 命令. # 注释以 # 开始 # R 语言原生不支持 多行注释 # 但是你可以像这 ...
- sql的函数和存储过程的区别
本文部分内容转自http://www.cnblogs.com/lengbingshy/archive/2010/02/25/1673476.html 本质上没区别.只是函数有如:只能返回一个变量的限制 ...
- Javassist
Javassist 实现动态代理 javassist 是一款非常优秀的Java 字节码引擎工具,能够在运行时编译.生成Java Class.
- Linux基础命令---sudo
sudo sudo允许用户以超级用户或安全策略指定的另一个用户的身份执行命令.Sudo支持安全策略插件和输入/输出日志的插件.第三方可以开发和分发自己的策略和I/O日志插件,以便与sudo前端无缝地工 ...
- redis安装 phpredis Jedis 扩展的实现及注意事项,php,java,python相关插件安装实例代码和文档推荐
redis安装 phpredis Jedis 扩展的实现及注意事项,php,java,python相关插件安装实例代码和文档推荐 1.Redis 官方网站下载: http://redis.io/dow ...
- Qt之美(一):D指针/私有实现
The English version is available at: http://xizhizhu.blogspot.com/2010/11/beauty-of-qt-1-d-pointer-p ...
- jar与war 包解压
JAR包是Java中所特有一种压缩文档,其实大家就可以把它理解为.zip包.当然也是有区别的,JAR包中有一个META-INF\MANIFEST.MF文件,当你找成JAR包时,它会自动生成.JAR包是 ...
- HCNP学习笔记之子网掩码的计算和划分详细
0x00 子网掩码的计算 TCP/IP网间网技术产生于大型主流机环境中,它能发展到今天的规模是当初的设计者们始料未及的.网间网规模的迅速扩展对IP地址模式的威胁并不是它不能保证主机地址的唯一性,而是会 ...
- Linux学习笔记之如何让普通用户获得ROOT权限
在学习sodu的时候,我发现一些命令只能由root用户使用,普通用户使用会提示此用户没有使用sudo的权限.我想到的解方法是把正在使用的普通用户获得root权限,于是我通过百度和询问老师知道了如何去实 ...
- Python入门之logging日志模块以及多进程日志
本篇文章主要对 python logging 的介绍加深理解.更主要是 讨论在多进程环境下如何使用logging 来输出日志, 如何安全地切分日志文件. 1. logging日志模块介绍 python ...