递归C++

一、递归简介

自己调用自己

二、递归写法

2.1 写法介绍

先写出问题的递推公式

递归部分的边界条件就是递推公式中的边界条件

递归部分的主体部分就是递推公式中的主体部分

2.2 实例

(1)题目

例如:求n!。

(2)分析

递归公式为 f(n)=f(n-1)*n f(1)=1;

对应的递归:

 /*
阶乘递归
递归公式为 f(n)=f(n-1)*n f(1)=1;
递归部分的边界条件就是递推公式中的边界条件 f(1)=1
递归部分的主体部分就是递推公式中的主体部分 f(n)=f(n-1)*n
*/
int factorial_Recursion(int n){
if(n==) return ;
else return factorial_Recursion(n-)*n;
}

(3)完整代码

 #include <iostream>
using namespace std; int factorial(int n);
int factorial_Recursion(int n); /*
阶乘非递归
*/
int factorial(int n){
int ans=;
for(int i=;i<=n;i++){
ans*=i;
}
return ans;
} /*
阶乘递归
递归公式为 f(n)=f(n-1)*n f(1)=1;
递归部分的边界条件就是递推公式中的边界条件 f(1)=1
递归部分的主体部分就是递推公式中的主体部分 f(n)=f(n-1)*n
*/
int factorial_Recursion(int n){
if(n==) return ;
else return factorial_Recursion(n-)*n;
} int main(){
int ans;
//ans=factorial(5);
ans=factorial_Recursion();
printf("%d\n",ans);
return ;
}

(4)代码结果

120

三、递归实例

3.1 辗转相除法求公约数

递推公式:f(a,b)=f(b,a%b) b!=0;

代码:

 #include <iostream>
using namespace std; void exchange(int &a,int &b);
int commonDivisor(int a,int b);
int commonDivisor_Recursion(int a,int b); /*
交换a和b两个数的值
*/
void exchange(int &a,int &b){
a=a^b;
b=a^b;
a=a^b;
} /*
非递归辗转相除法求公约数:
用辗转相除法的时候要保证a大于等于b
*/
int commonDivisor(int a,int b){
if(b>a) exchange(a,b);
int tmp=a%b;
while(tmp){
a=b;
b=tmp;
tmp=a%b;
}
return b;
} /*
递归辗转相除法求公约数:
用辗转相除法的时候要保证a大于等于b
递推公式:f(a,b)=f(b,a%b) b!=0;
边界条件为: b!=0
递归主体为: f(a,b)=f(b,a%b)
*/
int commonDivisor_Recursion(int a,int b){
if(a%b==) return b;
else commonDivisor_Recursion(b,a%b);
} int main(){
int ans;
//ans=commonDivisor(15,9);
ans=commonDivisor_Recursion(,);
printf("%d\n",ans);
return ;
}

代码结果:

3

3.2 判断和相等

题目:

已知一个一维数组a[1...n]和一个确定的数m,判断能否使数组a中的任意几个元素之和等于m,能则输出YES,不能则输出NO。

分析:

分为取a[n]和不取a[n]的情况,则递推公式为:

f(n,m)=f(n-1,m-a[n])||f(n-1,m)

这里可以用一个全局变量来输出结果,只有有一种情况满足了,就满足了。

这个题目没完,后面要补。

递归C++的更多相关文章

  1. .NET 基础 一步步 一幕幕[面向对象之方法、方法的重载、方法的重写、方法的递归]

    方法.方法的重载.方法的重写.方法的递归 方法: 将一堆代码进行重用的一种机制. 语法: [访问修饰符] 返回类型 <方法名>(参数列表){ 方法主体: } 返回值类型:如果不需要写返回值 ...

  2. 算法笔记_013:汉诺塔问题(Java递归法和非递归法)

    目录 1 问题描述 2 解决方案  2.1 递归法 2.2 非递归法 1 问题描述 Simulate the movement of the Towers of Hanoi Puzzle; Bonus ...

  3. Android 算法 关于递归和二分法的小算法

     // 1. 实现一个函数,在一个有序整型数组中二分查找出指定的值,找到则返回该值的位置,找不到返回 -1. package demo; public class Mytest { public st ...

  4. 二叉树的递归实现(java)

    这里演示的二叉树为3层. 递归实现,先构造出一个root节点,先判断左子节点是否为空,为空则构造左子节点,否则进入下一步判断右子节点是否为空,为空则构造右子节点. 利用层数控制迭代次数. 依次递归第二 ...

  5. 递归实现n(经典的8皇后问题)皇后的问题

    问题描述:八皇后问题是一个以国际象棋为背景的问题:如何能够在8×8的国际象棋棋盘上放置八个皇后, 使得任何一个皇后都无法直接吃掉其他的皇后?为了达到此目的,任两个皇后都不能处于同一条横行.纵行或斜线上 ...

  6. C语言用分别用递归和循环求数字的阶乘的方法

    以下代码均为 自己 实现,嘻嘻! 参考文章:http://blog.csdn.net/talk_8/article/details/46289683 循环法 int CalFactorial(int ...

  7. C#递归解决汉诺塔问题(Hanoi)

    using System;using System.Collections.Generic;using System.Linq;using System.Text; namespace MyExamp ...

  8. Java之递归求和的两张方法

    方法一: package com.smbea.demo; public class Student { private int sum = 0; /** * 递归求和 * @param num */ ...

  9. C#语言基础——递归

    递归 一.概念conception: 函数体内调用本函数自身,直到符合某一条件不再继续调用. 二.应满足条件factor: (1)有反复执行的过程(调用自身): (2)有跳出反复执行过程的条件(函数出 ...

  10. SQL Server封闭掉 触发器递归

    SQL Server关闭掉 触发器递归SQL Server  是有一个开关, 可以关闭掉 触发器递归的.EXEC sp_dboption '数据库名字', 'recursive triggers', ...

随机推荐

  1. 27. Remove Element(双指针)

      Given an array nums and a value val, remove all instances of that value in-place and return the ne ...

  2. java的时间处理

    采用joda.time库 gradle,可以简化calendar的 compile "joda-time:joda-time:2.7" 例子:http://blog.csdn.ne ...

  3. C/S模型之命名管道

    说明:利用管道实现服务端与客户端之间的交互.效果等同于利用socket. 命名管道(NamedPipe)是一种简单的进程间通信(IPC)机制,是服务器进程和一个或多个客户进程之间通信的单向或双向管道. ...

  4. Linux服务器配置---phpmyadmin

    phpMyAdmin 工具 1.检测是否已安装php.php-mysql.apache等工具 [root@localhost src]# rpm -qa |grep php php-cli-5.3.3 ...

  5. xmind使用教程思维导图

    xmind使用教程思维导图 开始XMind旅程标记: 仅需2个快捷键 1 点击快捷键 创建同级主题 创建子主题 2 输入 选中主题后, 双击鼠标左键 或 单击空格键, 进入编辑状态. 3 其他内容 您 ...

  6. linux chkconfig 管理服务开机自启动

    chkconfig命令主要用来更新(启动或停止)和查询系统服务的运行级信息.谨记chkconfig不是立即自动禁止或激活一个服务,它只是简单的改变了符号连接. 使用语法:chkconfig [--ad ...

  7. java service wrapper日志参数设置及优化

    一般在容器比如tomcat/weblogic中运行时,我们都是通过log4j控制日志输出的,因为我们现在很多服务端使用java service wrapper(至于为什么使用jsw,原先是比较排斥使用 ...

  8. 03: shell简单监控脚本

    1.1 监控apache web server #! /bin/bash # apache netstat -anpt | grep 80 &> /dev/null if [ $? -e ...

  9. linux磁盘分区详解【转】

    本文装载自:http://blog.csdn.net/aaronychen/article/details/2270048#comments 在学习 Linux 的过程中,安装 Linux 是每一个初 ...

  10. 基础dp 记录

    51nod 1134 最长递增子序列 #include<iostream> #include<cstdio> #include<cstring> #include& ...