UVALive 3938 - "Ray, Pass me the dishes!" - [最大连续子列和+线段树]
题目链接:https://cn.vjudge.net/problem/UVALive-3938
参考刘汝佳书上说的:
题意:
给出一个长度为n的序列, 再给出m个询问, 每个询问是在序列 $[a,b]$ 之间的最大连续和. 要你计算出这个这个区间内最大连续和的区间 $[x,y](a \le x \le y \le b)$;
思路:
1、构造线段树,其中每个结点维护3个值,最大连续子列和 $max\_sub$,最大前缀和 $max\_prefix$,最大后缀和 $max\_suffix$。
具体来说,
$max\_sub(a,b)$ 是满足 $a \le x \le y \le b$ 且 $D_x+D_{x+1}+…+D_y$ 最大的二元组 $(x,y)$;
$max\_prefix(a,b)$ 是满足 $a \le x \le b$ 且 $D_a+D_{a+1}+…+D_x$ 最大的整数 $x$;
$max\_suffix(a,b)$ 是满足 $a \le x \le b$ 且 $D_x+D_{x+1}+…+D_b$ 最大的整数 $x$;
例如 $n=64$,询问为 $(20,50)$,则线段 $[20,50]$ 在线段树的根结点处被分成了两条线段 $[20,32]$ 和 $[33,50]$。则 $max\_sub(20, 50)$ 的起点和终点有3种情况:
情况一:起点和终点都在 $[20,32]$ 中,则 $max\_sub(20,50)=max\_sub(20,32)$。
情况二:起点和终点都在 $[33,50]$ 中,则 $max\_sub(20,50)=max\_sub(33,50)$。
情况三:起点在 $[20,32]$ 中,终点在 $[33,50]$ 中,则 $max\_sub(20,50)=max\_suffix(20, 32) + max\_prefix(33,50)$。
类似地 $max\_suffix$ 和 $max\_prefix$ 也可以这样递推,建树的时间复杂度为 $O(n)$,单组查询的时间复杂度为 $O(\log n)$。
当然,我们实际上做的话,没这么简单:
我们每个线段树节点都维护以下几个值:
max_sub:最大连续子列和
max_pre:最大前缀和
max_suf:最大后缀和
pre_i:最大前缀的结束位置
suf_i:最大后缀的开始位置
sum:区间总和
根据上面刘汝佳书上的三种情况可以写出pushup()函数(前缀和、后缀和的更新也在包含里面),然后后面的build()和query()两个函数都可以用pushup()函数。
更多详细的情况,都在代码里体现了。
AC代码:
#include<cstdio>
#include<algorithm>
#define MAXN 500000+5
typedef long long ll;
using namespace std;
struct Node{
int l,r;
ll sum,max_sub,max_pre,max_suf;//区间和,最大连续子列和,最大前缀和,最大后缀和
int sub_l,sub_r,pre_i,suf_i;//最大连续子列和的边界,最大前缀和的边界,最大后缀和的边界
}node[*MAXN];
int n,m,a[MAXN];
void pushup(Node& root,Node& lchild,Node& rchild)
{
root.sum = lchild.sum + rchild.sum; if(lchild.max_pre >= lchild.sum + rchild.max_pre)
{
root.max_pre = lchild.max_pre;
root.pre_i = lchild.pre_i;
}
else
{
root.max_pre = lchild.sum + rchild.max_pre;
root.pre_i = rchild.pre_i;
} if(lchild.max_suf + rchild.sum >= rchild.max_suf)
{
root.max_suf = lchild.max_suf + rchild.sum;
root.suf_i = lchild.suf_i;
}
else
{
root.max_suf = rchild.max_suf;
root.suf_i = rchild.suf_i;
} root.max_sub = lchild.max_sub;
root.sub_l = lchild.sub_l;
root.sub_r = lchild.sub_r;
if(lchild.max_suf + rchild.max_pre > root.max_sub || (lchild.max_suf + rchild.max_pre == root.max_sub && lchild.suf_i < root.sub_l))
{
root.max_sub = lchild.max_suf + rchild.max_pre;
root.sub_l = lchild.suf_i;
root.sub_r = rchild.pre_i;
}
if(rchild.max_sub > root.max_sub)
{
root.max_sub = rchild.max_sub;
root.sub_l = rchild.sub_l;
root.sub_r = rchild.sub_r;
}
}
void build(int root,int l,int r)
{
node[root].l=l;
node[root].r=r;
if(l==r)
{
node[root].sum=a[l];
node[root].max_sub=a[l]; node[root].sub_l=l; node[root].sub_r=l;
node[root].max_pre=a[l]; node[root].pre_i=l;
node[root].max_suf=a[l]; node[root].suf_i=l;
}
else
{
int mid=l+(r-l)/;
build(root*,l,mid);
build(root*+,mid+,r);
pushup(node[root],node[root*],node[root*+]);
}
}
Node query(int root,int st,int ed)
{
if(st==node[root].l && node[root].r==ed) return node[root]; int mid=(node[root].l+node[root].r)/;
if(ed<=mid) return query(root*,st,ed);
else if(st>mid) return query(root*+,st,ed);
else
{
Node r1=query(root*,st,mid);
Node r2=query(root*+,mid+,ed);
Node ans; ans.l = st, ans.r=ed;
pushup(ans,r1,r2); return ans;
}
}
int main()
{
int kase=;
while(scanf("%d%d",&n,&m)!=EOF)
{
for(int i=;i<=n;i++) scanf("%d",&a[i]);
build(,,n);
printf("Case %d:\n",++kase);
for(int i=,l,r;i<=m;i++)
{
scanf("%d%d",&l,&r);
Node ans=query(,l,r);
printf("%d %d\n",ans.sub_l,ans.sub_r);
}
}
}
PS.这道题可以说要对普通线段树模板进行巨大的改动,是一道可以加深对线段树理解的好题。
UVALive 3938 - "Ray, Pass me the dishes!" - [最大连续子列和+线段树]的更多相关文章
- uvalive 3938 "Ray, Pass me the dishes!" 线段树 区间合并
题意:求q次询问的静态区间连续最大和起始位置和终止位置 输出字典序最小的解. 思路:刘汝佳白书 每个节点维护三个值 pre, sub, suf 最大的前缀和, 连续和, 后缀和 然后这个题还要记录解的 ...
- UVALive 3938 Ray, Pass me the dishes! (动态最大连续和)
题意:求一个动态区间的最大连续和. 静态版本的O(n)算法显示不适用了,但是可以用线段树分治,因为一个连续和要在两边的区间,要么跨越两边,对于一个结点维护最大前缀和,后缀和,子区间连续和. 题目要求输 ...
- UvaLA 3938 "Ray, Pass me the dishes!"
"Ray, Pass me the dishes!" Time Limit: 3000MS Memory Limit: Unkn ...
- UVA 1400."Ray, Pass me the dishes!" -分治+线段树区间合并(常规操作+维护端点)并输出最优的区间的左右端点-(洛谷 小白逛公园 升级版)
"Ray, Pass me the dishes!" UVA - 1400 题意就是线段树区间子段最大和,线段树区间合并,但是这道题还要求输出最大和的子段的左右端点.要求字典序最小 ...
- UVA 1400 1400 - "Ray, Pass me the dishes!"(线段树)
UVA 1400 - "Ray, Pass me the dishes!" option=com_onlinejudge&Itemid=8&page=show_pr ...
- 【LA3938】"Ray, Pass me the dishes!"
原题链接 Description After doing Ray a great favor to collect sticks for Ray, Poor Neal becomes very hun ...
- UVALive - 3938:"Ray, Pass me the dishes!"
优美的线段树 #include<cstdio> #include<cstdlib> #include<algorithm> #include<cstring& ...
- 线段树(区间合并) LA 3989 "Ray, Pass me the dishes!"
题目传送门 题意:动态最大连续子序列和,静态的题目 分析:nlogn的归并思想.线段树维护结点的三个信息,最大前缀和,最大后缀和,该区间的最大和的两个端点,然后答案是三个的better.书上用pair ...
- UVa 1400 (线段树) "Ray, Pass me the dishes!"
求一个区间的最大连续子序列,基本想法就是分治,这段子序列可能在区间的左半边,也可能在区间的右半边,也有可能是横跨区间中点,这样就是左子区间的最大后缀加上右子区间的最大前缀之和. 线段树维护三个信息:区 ...
随机推荐
- winform 打开一个窗体,关闭一个窗体
例如 我要打开一个窗体b,关闭一个窗体a a中的代码添加: private void pictureBox5_Click(object sender, EventArgs e) { W_MainFo ...
- SpringMVC由浅入深day02_5数据回显_6异常处理器
5 数据回显 5.1 什么数据回显 表单提交失败需要再回到表单页面重新填写,原来提交的数据需要重新在页面上显示. 5.2 pojo数据回显方法 1.springmvc默认对pojo数据进行回显. po ...
- javascript 以“年-月-日 时:分:秒”格式显示当前时间
运行代码 /** * Created by shgbit on 2015/1/9. *js代码 */ function showNow(){ var t=new Date(); var mont ...
- Python 基础进阶
函数的定义 函数的参数 函数的默认参数 函数的变量 函数的返回值 函数的多类型传值 函数的冗余参数 函数的递归调用 匿名函数 高阶函数 内建函数 模块与包 面向对象 类的定义 类的属性 类的内置属性 ...
- OSG3.4编译FFMPEG插件
0.加入你要读a.mp4,那个正确的写法是osg::Image* image = osgDB::readImageFile("a.mp4.ffmpeg"); 1.在github上下 ...
- 使用node中的iconv-lite实现对“gbk”格式的转码
在window中,gbk和utf-8是最常见的两种格式,但是我们在显示的时候往往需要将GBK转换为UTF-8,我现在有一个同步读取文件的操作: const fs = require('fs'); co ...
- (原)android修改文件所属的用户组
首先得安装了busybox: 命令如下: busybox fileName 其中的0表示root,改成1000则表示system,改成2000则表示shell.
- GNU Readline库函数的应用示例
说明 GNU Readline是一个跨平台开源程序库,提供交互式的文本编辑功能.应用程序借助该库函数,允许用户编辑键入的命令行,并提供自动补全和命令历史等功能.Bash(Bourne Again Sh ...
- 二、K3 Cloud 开发插件《K3 Cloud 常用数据表整理》
一.数据库查询常用表 --查询数据表select * from ( ),t1.FKERNELXML.query('//TableName')) as 'Item',t1.FKERNELXML,t2.F ...
- 【大数据系列】在windows下连接linux 下的hadoop环境进行开发
一.下载Eclipse并安装 二.下载exlipse的hadoop plugin 三.打开Map Reduce视图 Window --> Perspective --> Open pers ...