异常问题:Container is running beyond virtual memory limits. Current usage: 119.5 MB of 1 GB physical memory used; 2.2 GB of 2.1 GB virtual memory used. Killing container.

spark-submit提交脚本:

[spark@master work]$ more submit.sh
#! /bin/bash
jars="" for file in `ls /home/spark/work/jars/*.jar`
do
jars=$file,$jars
#echo $jars
done echo "------------------------------------"
echo $jars
echo "------------------------------------" /opt/spark-2.2.1-bin-hadoop2.7/bin/spark-submit \
--jars $jars \
--master yarn \
--verbose \
--driver-java-options "-XX:+TraceClassPaths" \
--num-executors 2 \
--executor-memory 1G \
--executor-cores 1 \
--driver-memory 1G \
--class com.dx.streaming.producer.TestProducer \
/home/spark/work/kafka-streaming-test.jar

在master节点上提交后,抛出异常:

18/07/09 05:00:16 INFO yarn.Client: Application report for application_1531069155353_0001 (state: ACCEPTED)
18/07/09 05:00:17 INFO yarn.Client: Application report for application_1531069155353_0001 (state: FAILED)
18/07/09 05:00:17 INFO yarn.Client:
client token: N/A
diagnostics: Application application_1531069155353_0001 failed 2 times due to AM Container for appattempt_1531069155353_0001_000002 exited with exitCode: -103
Failing this attempt.Diagnostics: [2018-07-09 05:00:16.132]Container [pid=5674,containerID=container_e22_1531069155353_0001_02_000001] is running beyond virtual memory limits. Current usage: 195.8 MB of 1 GB physical memory used; 2.3 GB of 2.1 GB virtual memory used. Killing container.
Dump of the process-tree for container_e22_1531069155353_0001_02_000001 :
|- PID PPID PGRPID SESSID CMD_NAME USER_MODE_TIME(MILLIS) SYSTEM_TIME(MILLIS) VMEM_USAGE(BYTES) RSSMEM_USAGE(PAGES) FULL_CMD_LINE
|- 5674 5673 5674 5674 (bash) 0 0 115896320 350 /bin/bash -c /opt/jdk1.8.0_171/bin/java -server -Xmx512m -Djava.io.tmpdir=/opt/hadoop-2.9.0/tmp/nm-local-dir/usercache/spark/appcache/application_1531069155353_0001/container_e22_1531069155353_0001_02_000001/tmp -Dspark.yarn.app.container.log.dir=/opt/hadoop-2.9.0/logs/userlogs/application_1531069155353_0001/container_e22_1531069155353_0001_02_000001 org.apache.spark.deploy.yarn.ExecutorLauncher --arg '192.168.0.120:40486' --properties-file /opt/hadoop-2.9.0/tmp/nm-local-dir/usercache/spark/appcache/application_1531069155353_0001/container_e22_1531069155353_0001_02_000001/__spark_conf__/__spark_conf__.properties 1> /opt/hadoop-2.9.0/logs/userlogs/application_1531069155353_0001/container_e22_1531069155353_0001_02_000001/stdout 2> /opt/hadoop-2.9.0/logs/userlogs/application_1531069155353_0001/container_e22_1531069155353_0001_02_000001/stderr
|- 5687 5674 5674 5674 (java) 208 35 2323283968 49770 /opt/jdk1.8.0_171/bin/java -server -Xmx512m -Djava.io.tmpdir=/opt/hadoop-2.9.0/tmp/nm-local-dir/usercache/spark/appcache/application_1531069155353_0001/container_e22_1531069155353_0001_02_000001/tmp -Dspark.yarn.app.container.log.dir=/opt/hadoop-2.9.0/logs/userlogs/application_1531069155353_0001/container_e22_1531069155353_0001_02_000001 org.apache.spark.deploy.yarn.ExecutorLauncher --arg 192.168.0.120:40486 --properties-file /opt/hadoop-2.9.0/tmp/nm-local-dir/usercache/spark/appcache/application_1531069155353_0001/container_e22_1531069155353_0001_02_000001/__spark_conf__/__spark_conf__.properties
[2018-07-09 05:00:16.133]
[2018-07-09 05:00:16.152]Container killed on request. Exit code is 143[2018-07-09 05:00:16.152]
[2018-07-09 05:00:16.156]Container exited with a non-zero exit code 143. [2018-07-09 05:00:16.156]
For more detailed output, check the application tracking page: http://master:8088/cluster/app/application_1531069155353_0001 Then click on links to logs of each attempt.
. Failing the application.
ApplicationMaster host: N/A
ApplicationMaster RPC port: -1
queue: default
start time: 1531083596749
final status: FAILED
tracking URL: http://master:8088/cluster/app/application_1531069155353_0001
user: spark
18/07/09 05:00:17 INFO yarn.Client: Deleted staging directory hdfs://HA/user/spark/.sparkStaging/application_1531069155353_0001
18/07/09 05:00:17 ERROR spark.SparkContext: Error initializing SparkContext.
org.apache.spark.SparkException: Yarn application has already ended! It might have been killed or unable to launch application master.
at org.apache.spark.scheduler.cluster.YarnClientSchedulerBackend.waitForApplication(YarnClientSchedulerBackend.scala:85)
at org.apache.spark.scheduler.cluster.YarnClientSchedulerBackend.start(YarnClientSchedulerBackend.scala:62)
at org.apache.spark.scheduler.TaskSchedulerImpl.start(TaskSchedulerImpl.scala:173)
at org.apache.spark.SparkContext.<init>(SparkContext.scala:509)
▽ at org.apache.spark.SparkContext$.getOrCreate(SparkContext.scala:2516)
at org.apache.spark.sql.SparkSession$Builder$$anonfun$6.apply(SparkSession.scala:918)
at org.apache.spark.sql.SparkSession$Builder$$anonfun$6.apply(SparkSession.scala:910)
at scala.Option.getOrElse(Option.scala:121)
at org.apache.spark.sql.SparkSession$Builder.getOrCreate(SparkSession.scala:910)
at com.dx.streaming.producer.TestProducer.main(TestProducer.java:39)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at org.apache.spark.deploy.SparkSubmit$.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:775)
at org.apache.spark.deploy.SparkSubmit$.doRunMain$1(SparkSubmit.scala:180)
at org.apache.spark.deploy.SparkSubmit$.submit(SparkSubmit.scala:205)
at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:119)
at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)
18/07/09 05:00:17 INFO server.AbstractConnector: Stopped Spark@60d84f61{HTTP/1.1,[http/1.1]}{0.0.0.0:4040}
18/07/09 05:00:17 INFO ui.SparkUI: Stopped Spark web UI at http://192.168.0.120:4040
18/07/09 05:00:17 WARN cluster.YarnSchedulerBackend$YarnSchedulerEndpoint: Attempted to request executors before the AM has registered!
18/07/09 05:00:17 INFO cluster.YarnClientSchedulerBackend: Shutting down all executors
18/07/09 05:00:17 INFO cluster.YarnSchedulerBackend$YarnDriverEndpoint: Asking each executor to shut down
18/07/09 05:00:17 INFO cluster.SchedulerExtensionServices: Stopping SchedulerExtensionServices
(serviceOption=None,
services=List(),
started=false)
18/07/09 05:00:17 INFO cluster.YarnClientSchedulerBackend: Stopped
18/07/09 05:00:17 INFO spark.MapOutputTrackerMasterEndpoint: MapOutputTrackerMasterEndpoint stopped!
18/07/09 05:00:17 INFO memory.MemoryStore: MemoryStore cleared
18/07/09 05:00:17 INFO storage.BlockManager: BlockManager stopped
18/07/09 05:00:17 INFO storage.BlockManagerMaster: BlockManagerMaster stopped
18/07/09 05:00:17 WARN metrics.MetricsSystem: Stopping a MetricsSystem that is not running
18/07/09 05:00:17 INFO scheduler.OutputCommitCoordinator$OutputCommitCoordinatorEndpoint: OutputCommitCoordinator stopped!
18/07/09 05:00:17 INFO spark.SparkContext: Successfully stopped SparkContext
Exception in thread "main" org.apache.spark.SparkException: Yarn application has already ended! It might have been killed or unable to launch application master.
at org.apache.spark.scheduler.cluster.YarnClientSchedulerBackend.waitForApplication(YarnClientSchedulerBackend.scala:85)
at org.apache.spark.scheduler.cluster.YarnClientSchedulerBackend.start(YarnClientSchedulerBackend.scala:62)
at org.apache.spark.scheduler.TaskSchedulerImpl.start(TaskSchedulerImpl.scala:173)
at org.apache.spark.SparkContext.<init>(SparkContext.scala:509)
at org.apache.spark.SparkContext$.getOrCreate(SparkContext.scala:2516)
at org.apache.spark.sql.SparkSession$Builder$$anonfun$6.apply(SparkSession.scala:918)
at org.apache.spark.sql.SparkSession$Builder$$anonfun$6.apply(SparkSession.scala:910)
at scala.Option.getOrElse(Option.scala:121)
at org.apache.spark.sql.SparkSession$Builder.getOrCreate(SparkSession.scala:910)
at com.dx.streaming.producer.TestProducer.main(TestProducer.java:39)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at org.apache.spark.deploy.SparkSubmit$.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:775)
at org.apache.spark.deploy.SparkSubmit$.doRunMain$1(SparkSubmit.scala:180)
at org.apache.spark.deploy.SparkSubmit$.submit(SparkSubmit.scala:205)
at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:119)
at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)
18/07/09 05:00:17 INFO util.ShutdownHookManager: Shutdown hook called
18/07/09 05:00:17 INFO util.ShutdownHookManager: Deleting directory /opt/spark-2.2.1-bin-hadoop2.7/spark-255c65cf-19d8-481a-94bc-843e058eb669

错误原因:

Container is running beyond virtual memory limits. Current usage: 119.5 MB of 1 GB physical memory used; 2.2 GB of 2.1 GB virtual memory used. Killing container.

YARN的虚拟内存计算方式导致,上例中用户程序申请的内存为1Gb,YARN根据此值乘以一个比例(默认为2.1)得出申请的虚拟内存的值,当YARN计算的用户程序所需虚拟内存值大于计算出来的值时,就会报出以上错误。

解决方案:

上网一查,发现有两种方法能解决这个问题:

1.将yarn.nodemanager.vmem-check-enabled的值改为false,即不检查VM的值;(修改yarn-site.xml)参考《https://discuss.elastic.co/t/unable-to-start-elasticsearch-yarn-container-is-running-beyond-virtual-memory-limits/26102/6》

<property>
<name>yarn.nodemanager.vmem-check-enabled</name>
<value>false</value>
</property>

2.将yarn.scheduler.minimum-allocation-mb的值调高一些,默认是1024mb,或者修改yarn.nodemanager.vmem-pmem-ratio的值,默认为2.1,将该值改得更大。

于是,这里我采用了第一种方法,关闭vn检查,需要重新格式化namenode,参考《Kafka:ZK+Kafka+Spark Streaming集群环境搭建(十)安装hadoop2.9.0搭建HA》,再次提交,果然好了。终于解决了这个困扰一天的问题啦!

Kafka:ZK+Kafka+Spark Streaming集群环境搭建(十三)kafka+spark streaming打包好的程序提交时提示虚拟内存不足(Container is running beyond virtual memory limits. Current usage: 119.5 MB of 1 GB physical memory used; 2.2 GB of 2.1 G)的更多相关文章

  1. Kafka:ZK+Kafka+Spark Streaming集群环境搭建(二十一)NIFI1.7.1安装

    一.nifi基本配置 1. 修改各节点主机名,修改/etc/hosts文件内容. 192.168.0.120 master 192.168.0.121 slave1 192.168.0.122 sla ...

  2. Kafka:ZK+Kafka+Spark Streaming集群环境搭建(十二)VMW安装四台CentOS,并实现本机与它们能交互,虚拟机内部实现可以上网。

    Centos7出现异常:Failed to start LSB: Bring up/down networking. 按照<Kafka:ZK+Kafka+Spark Streaming集群环境搭 ...

  3. Kafka:ZK+Kafka+Spark Streaming集群环境搭建(十一)定制一个arvo格式文件发送到kafka的topic,通过Structured Streaming读取kafka的数据

    将arvo格式数据发送到kafka的topic 第一步:定制avro schema: { "type": "record", "name": ...

  4. Kafka:ZK+Kafka+Spark Streaming集群环境搭建(十)安装hadoop2.9.0搭建HA

    如何搭建配置centos虚拟机请参考<Kafka:ZK+Kafka+Spark Streaming集群环境搭建(一)VMW安装四台CentOS,并实现本机与它们能交互,虚拟机内部实现可以上网.& ...

  5. Kafka:ZK+Kafka+Spark Streaming集群环境搭建(九)安装kafka_2.11-1.1.0

    如何搭建配置centos虚拟机请参考<Kafka:ZK+Kafka+Spark Streaming集群环境搭建(一)VMW安装四台CentOS,并实现本机与它们能交互,虚拟机内部实现可以上网.& ...

  6. Kafka:ZK+Kafka+Spark Streaming集群环境搭建(八)安装zookeeper-3.4.12

    如何搭建配置centos虚拟机请参考<Kafka:ZK+Kafka+Spark Streaming集群环境搭建(一)VMW安装四台CentOS,并实现本机与它们能交互,虚拟机内部实现可以上网.& ...

  7. Kafka:ZK+Kafka+Spark Streaming集群环境搭建(三)安装spark2.2.1

    如何搭建配置centos虚拟机请参考<Kafka:ZK+Kafka+Spark Streaming集群环境搭建(一)VMW安装四台CentOS,并实现本机与它们能交互,虚拟机内部实现可以上网.& ...

  8. Kafka:ZK+Kafka+Spark Streaming集群环境搭建(二)安装hadoop2.9.0

    如何搭建配置centos虚拟机请参考<Kafka:ZK+Kafka+Spark Streaming集群环境搭建(一)VMW安装四台CentOS,并实现本机与它们能交互,虚拟机内部实现可以上网.& ...

  9. hadoop的job执行在yarn中内存分配调节————Container [pid=108284,containerID=container_e19_1533108188813_12125_01_000002] is running beyond virtual memory limits. Current usage: 653.1 MB of 2 GB physical memory used

    实际遇到的真实问题,解决方法: 1.调整虚拟内存率yarn.nodemanager.vmem-pmem-ratio (这个hadoop默认是2.1) 2.调整map与reduce的在AM中的大小大于y ...

随机推荐

  1. OpenVPN选项topology subnet实现子网掩码24的子网地址扩展

    首先,在国内的文章中都没有提及这个概念,到时很多人生成的VPN服务端配置分配的IP都采用net30这种形式,这就导致了在任何一台VPN客户端上无法实现路由指向,因为子网掩码30换算出来就两个地址. t ...

  2. 关于MongoDB时区问题

    由于MongoDb存储时间按照UTC时间存储的,其官方驱动MongoDB.driver存储时间的时候将本地时间转换为了utc时间,但它有个蛋疼的bug,读取的时候非常蛋疼的是返回的是utc使时间.一个 ...

  3. 【报错】RSA host key for 192.168.1.xxx has changed and you have requested strict checking.

    执行如下对机拷贝命令 scp .ssh/id_rsa.pub phpgo@192.168.1.35:~ 时,报错 RSA host key for 192.168.1.xxx has changed ...

  4. DELPHI之崩溃地址排错代码查看 转

    http://www.cnblogs.com/enli/archive/2009/01/15/1376540.html 最近研究了一下HOOK技术,想抓取某些游戏的包,因此需要注入DLL,结果老是有异 ...

  5. 解决ASP.NET MVC4中使用Html.DropDownListFor显示枚举值默认项问题

    从ASP.NET MVC 5开始,Html.DropDownListFor已经提供了对Enum的支持,但在这以前,需要通过帮助方法或扩展方法来让Html.DropDownListFor显示枚举值. 本 ...

  6. ./adb: error while loading shared libraries: libncurses.so.5:

    from://http://stackoverflow.com/questions/10005907/eclipse-android-plugin-libncurses-so-5 sudo apt-g ...

  7. Android实现对HOME键的捕获和屏蔽

    1.1. 在AndroidManifest.xml中加上权限,禁止HOME键. <uses-permission android:name="android.permission.DI ...

  8. HDU 1575 Tr A(矩阵高速幂)

    题目地址:HDU 1575 矩阵高速幂裸题. 初学矩阵高速幂.曾经学过高速幂.今天一看矩阵高速幂,原来其原理是一样的,这就好办多了.都是利用二分的思想不断的乘.仅仅只是把数字变成了矩阵而已. 代码例如 ...

  9. python测试开发django-29.发送html格式邮件

    前言 上一篇已经通过send_mail()函数发送纯文本的邮件,发送成功了,如果我们想发送一个html格式的邮件,如何实现呢? 发送html格式的邮件实际上还是调用send_mail()函数 ,只需多 ...

  10. 侏罗纪世界2百度云在线观看迅雷下载高清BT下载

    原名:Jurassic World: Fallen Kingdom 地区:美国 语言:英语 首播:2018-06-15(中国大陆) / 2018-06-22(美国) 电视台: 类型:动作 / 科幻 / ...