select gender,
       age,
       row_number() over(partition by gender order by age) as rowNumber,
       rank() over(partition by gender order by age) as ranks,
       dense_rank() over(partition by gender order by age) as denseRank,
       percent_rank() over(partition by gender order by age) as percentRank
  from Affairs

val spark = SparkSession.builder().appName("Spark SQL basic example").config("spark.some.config.option", "some-value").getOrCreate()

// For implicit conversions like converting RDDs to DataFrames
import spark.implicits._ val dataList: List[(Double, String, Double, Double, String, Double, Double, Double, Double)] = List(
(0, "male", 37, 10, "no", 3, 18, 7, 4),
(0, "female", 27, 4, "no", 4, 14, 6, 4),
(0, "female", 32, 15, "yes", 1, 12, 1, 4),
(0, "male", 57, 15, "yes", 5, 18, 6, 5),
(0, "male", 22, 0.75, "no", 2, 17, 6, 3),
(0, "female", 32, 1.5, "no", 2, 17, 5, 5),
(0, "female", 22, 0.75, "no", 2, 12, 1, 3),
(0, "male", 57, 15, "yes", 2, 14, 4, 4),
(0, "female", 32, 15, "yes", 4, 16, 1, 2),
(0, "male", 22, 1.5, "no", 4, 14, 4, 5),
(0, "male", 37, 15, "yes", 2, 20, 7, 2),
(0, "male", 27, 4, "yes", 4, 18, 6, 4),
(0, "male", 47, 15, "yes", 5, 17, 6, 4),
(0, "female", 22, 1.5, "no", 2, 17, 5, 4),
(0, "female", 27, 4, "no", 4, 14, 5, 4),
(0, "female", 37, 15, "yes", 1, 17, 5, 5),
(0, "female", 37, 15, "yes", 2, 18, 4, 3),
(0, "female", 22, 0.75, "no", 3, 16, 5, 4),
(0, "female", 22, 1.5, "no", 2, 16, 5, 5),
(0, "female", 27, 10, "yes", 2, 14, 1, 5),
(0, "female", 22, 1.5, "no", 2, 16, 5, 5),
(0, "female", 22, 1.5, "no", 2, 16, 5, 5),
(0, "female", 27, 10, "yes", 4, 16, 5, 4),
(0, "female", 32, 10, "yes", 3, 14, 1, 5),
(0, "male", 37, 4, "yes", 2, 20, 6, 4)) val data = dataList.toDF("affairs", "gender", "age", "yearsmarried", "children", "religiousness", "education", "occupation", "rating") data.printSchema() // 创建视图
data.createOrReplaceTempView("Affairs") val s1="row_number() over(partition by gender order by age) as rowNumber,"
val s2="rank() over(partition by gender order by age) as ranks,"
val s3="dense_rank() over(partition by gender order by age) as denseRank,"
val s4="percent_rank() over(partition by gender order by age) as percentRank"
val df8=spark.sql("select gender,age,"+s1+s2+s3+s4+" from Affairs") df8.show(50)
+------+----+---------+-----+---------+------------------+
|gender| age|rowNumber|ranks|denseRank| percentRank|
+------+----+---------+-----+---------+------------------+
|female|22.0| 1| 1| 1| 0.0|
|female|22.0| 2| 1| 1| 0.0|
|female|22.0| 3| 1| 1| 0.0|
|female|22.0| 4| 1| 1| 0.0|
|female|22.0| 5| 1| 1| 0.0|
|female|22.0| 6| 1| 1| 0.0|
|female|27.0| 7| 7| 2| 0.4|
|female|27.0| 8| 7| 2| 0.4|
|female|27.0| 9| 7| 2| 0.4|
|female|27.0| 10| 7| 2| 0.4|
|female|32.0| 11| 11| 3|0.6666666666666666|
|female|32.0| 12| 11| 3|0.6666666666666666|
|female|32.0| 13| 11| 3|0.6666666666666666|
|female|32.0| 14| 11| 3|0.6666666666666666|
|female|37.0| 15| 15| 4|0.9333333333333333|
|female|37.0| 16| 15| 4|0.9333333333333333|
| male|22.0| 1| 1| 1| 0.0|
| male|22.0| 2| 1| 1| 0.0|
| male|27.0| 3| 3| 2| 0.25|
| male|37.0| 4| 4| 3| 0.375|
| male|37.0| 5| 4| 3| 0.375|
| male|37.0| 6| 4| 3| 0.375|
| male|47.0| 7| 7| 4| 0.75|
| male|57.0| 8| 8| 5| 0.875|
| male|57.0| 9| 8| 5| 0.875|
+------+----+---------+-----+---------+------------------+

Spark2 Dataset分析函数--排名函数row_number,rank,dense_rank,percent_rank的更多相关文章

  1. SQL Server中排名函数row_number,rank,dense_rank,ntile详解

    SQL Server中排名函数row_number,rank,dense_rank,ntile详解 从SQL SERVER2005开始,SQL SERVER新增了四个排名函数,分别如下:1.row_n ...

  2. 好用的排名函数~ROW_NUMBER(),RANK(),DENSE_RANK() 三兄弟

    排名函数三兄弟,一看名字就知道,都是为了排名而生!但是各自有各自的特色!以下一个例子说明问题!(以下栗子没有使用Partition By 的关键字,整个结果集进行排序) RANK 每个值一个排名,同样 ...

  3. SQL Server:排名函数row_number,rank,dense_rank,ntile详解

    1.Row_Number函数 row_number函数大家比较熟悉一些,因为它的用途非常的广泛,我们经常在分页与排序中用到它,它的功能就是在每一行中生成一个连续的不重复的序号 例如: select S ...

  4. Oracle分析函数/排名函数/位移函数/同比环比

    分析函数 作用:分析函数可以在数据中进行分组,然后计算基于组的某种统计值,并且每一组的每一行都可以返回一个统计值.统计函数:MAX(字段名).MIN(字段名).AVG(字段名).SUM(字段名).CO ...

  5. 知方可补不足~row_number,rank,dense_rank,ntile排名函数的用法

    回到目录 这篇文章介绍SQL中4个很有意思的函数,我称它的行标函数,它们是row_number,rank,dense_rank和ntile,下面分别进行介绍. 一 row_number:它为数据表加一 ...

  6. 大数据学习day29-----spark09-------1. 练习: 统计店铺按月份的销售额和累计到该月的总销售额(SQL, DSL,RDD) 2. 分组topN的实现(row_number(), rank(), dense_rank()方法的区别)3. spark自定义函数-UDF

    1. 练习 数据: (1)需求1:统计有过连续3天以上销售的店铺有哪些,并且计算出连续三天以上的销售额 第一步:将每天的金额求和(同一天可能会有多个订单) SELECT sid,dt,SUM(mone ...

  7. Hive学习之路 (十四)Hive分析窗口函数(二) NTILE,ROW_NUMBER,RANK,DENSE_RANK

    概述 本文中介绍前几个序列函数,NTILE,ROW_NUMBER,RANK,DENSE_RANK,下面会一一解释各自的用途. 注意: 序列函数不支持WINDOW子句.(ROWS BETWEEN) 数据 ...

  8. ROW_NUMBER()/RANK()/DENSE_RANK()/ntile() over()

    ROW_NUMBER()/RANK()/DENSE_RANK()/ntile() over()   今天女票问我SqlServer的四种排序,当场写了几句Sql让她了解,现把相关Sql放上来. 首先, ...

  9. SQL Server - 四种排序, ROW_NUMBER() /RANK() /DENSE_RANK() /ntile() over()

    >>>>英文版 (更简洁易懂)<<<< 转载自:https://dzone.com/articles/difference-between-rownum ...

随机推荐

  1. Spring MVC手札

    本文用于记录使用Spring MVC中的零散手札 1.在普通java类中获取HttpServletRequest对象  在web.xml的listener节点加入 <listener> & ...

  2. VC++6.0远程调试(亲试成功)

    0 前言 VS2008及以上远程调试上篇已经讲过,这里再讲下VC++6.0开发环境下的远程调试能力,仅需下面4步即可,更方便的就接着后面的5-6步. 因为目标程序需要在有采集卡等相关硬件支持下的工控机 ...

  3. 安装MySQL-python: EnvironmentError:mysql config not found

    1执行 sudo yum install python-devel 2 find / -name mysql_config 在/usr/bin/下发现了这个文件 3. 后修改MySQL-python- ...

  4. linux 按照端口一句命令杀死进程,按照进程名称一句命令杀死进程

    例如杀死nginx 按照程序名称杀死进程 例如杀死nginx的进程 ps -aux|grep nginx|grep -v grep|cut -c 9-15|xargs kill -9 或者 ps -a ...

  5. MTK 系统禁止通知状态栏下拉

    之前看了网上很多修改,感觉太繁琐,修改代码太多,最后感觉还是自己找找,看能不能简单点 diff --git a/android/frameworks/base/packages/SystemUI/sr ...

  6. web实现QQ头像上传截取功能

    由于最近一段时间比较忙,发现好久没写博客了,给大家分享下最近搞的logo上传截取功能.在实现这个功能之前找了一些jq的插件,最后选定了cropper在github中可以找到. 具体的思路是1:选择上传 ...

  7. easyui datagrid 单元格编辑(cell editing)

    demo中有row editing 项目中发现个cell editing,但是有bug,修改好了 主要实现功能:单击数据表格单元格,编辑单元格数据 js代码如下: $.extend($.fn.data ...

  8. error: pathspec 'master' did not match any file(s) known to git.

    问题描述: 在远程服务器上新建裸仓库git  --bare init : git clone裸仓库到本地: 本地新建并切换分支xccdev,git checkout -b xccdev: 从xccde ...

  9. 关于OSG+QT+VS版本的问题

    CMake3.10.0 Qt5.11.0安装包只有VS2017_64版本,没有VS2017的32位版本,有VS2015的32位版本 Qt5.11.0+osg3.4在CMake的时候,会出现 CMake ...

  10. jquery前端验证框架

    1.validationEngine.jquery.css  样式包 2.jquery.validationEngine-zh_CN.js 中文语言包 3.jquery.validationEngin ...