Description

  P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京。他使用自己的压缩器进行压
缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中。P教授有编号为1...N的N件玩具,第i件玩具经过
压缩后变成一维长度为Ci.为了方便整理,P教授要求在一个一维容器中的玩具编号是连续的。同时如果一个一维容
器中有多个玩具,那么两件玩具之间要加入一个单位长度的填充物,形式地说如果将第i件玩具到第j个玩具放到一
个容器中,那么容器的长度将为 x=j-i+Sigma(Ck) i<=K<=j 制作容器的费用与容器的长度有关,根据教授研究,
如果容器长度为x,其制作费用为(X-L)^2.其中L是一个常量。P教授不关心容器的数目,他可以制作出任意长度的容
器,甚至超过L。但他希望费用最小.

Input

  第一行输入两个整数N,L.接下来N行输入Ci.1<=N<=50000,1<=L,Ci<=10^7

Output

  输出最小费用

Sample Input

5 4
3
4
2
1
4

Sample Output

1
 
思路:我们不难看出 这是一维的整数划分问题我们可以推出状态方程
dp[i]=min(dp[j]+(i−j−1+sum[i]−sum[j]−L)2),(0<=j<i) 时间复杂度为O(n2)
然后我们经过证明决策单调性后可以用斜率优化dp
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
#include<string>
#include<vector>
#include<stack>
#include<bitset>
#include<cstdlib>
#include<cmath>
#include<set>
#include<list>
#include<deque>
#include<map>
#include<queue>
#define ll long long int
using namespace std;
inline ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
inline ll lcm(ll a,ll b){return a/gcd(a,b)*b;}
int moth[]={,,,,,,,,,,,,};
int dir[][]={, ,, ,-, ,,-};
int dirs[][]={, ,, ,-, ,,-, -,- ,-, ,,- ,,};
const int inf=0x3f3f3f3f;
const ll mod=1e9+;
ll n,c;
ll sum[];
ll a[];
ll dp[];
ll q[];
double slope(ll j,ll k){
return (dp[j]+(j+sum[j]+c)*(j+sum[j]+c)-dp[k]-(k+sum[k]+c)*(k+sum[k]+c))
/(2.0*(j+sum[j]-k-sum[k]));
}
int main(){
ios::sync_with_stdio(false);
while(cin>>n>>c){
++c;
for(int i=;i<=n;i++){
cin>>a[i];
sum[i]=sum[i-]+a[i];
}
int l,r;
l=r=;
for(int i=;i<=n;i++){
while(l<r && slope(q[l],q[l+])<i+sum[i]) ++l;
dp[i]=dp[q[l]]+(i+sum[i]-q[l]-sum[q[l]]-c)*(i+sum[i]-q[l]-sum[q[l]]-c);
while(l<r && slope(q[r-],q[r])>slope(q[r],i)) --r;
q[++r]=i;
}
cout<<dp[n]<<endl;
}
return ;
}

BZOJ 1010: 玩具装箱toy (斜率优化dp)的更多相关文章

  1. bzoj 1010 玩具装箱toy -斜率优化

    P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1...N的N件玩具,第i件玩具 ...

  2. BZOJ 1010: [HNOI2008]玩具装箱toy 斜率优化DP

    1010: [HNOI2008]玩具装箱toy Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再 ...

  3. bzoj1010[HNOI2008]玩具装箱toy 斜率优化dp

    1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 11893  Solved: 5061[Submit][S ...

  4. 『玩具装箱TOY 斜率优化DP』

    玩具装箱TOY(HNOI2008) Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊 ...

  5. 【bzoj1010】[HNOI2008]玩具装箱toy 斜率优化dp

    题目描述 P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1...N的N件玩具, ...

  6. 【BZOJ1010】【HNOI2008】玩具装箱toy (斜率优化DP) 解题报告

    题目: 题目在这里 思路与做法: 这题不难想. 首先我们先推出一个普通的dp方程: \(f_i = min \{ f_j+(i-j-1+sum_i-sum_j-L)^2\}\) 然后就推一推式子了: ...

  7. P3195 [HNOI2008]玩具装箱TOY 斜率优化dp

    传送门:https://www.luogu.org/problem/P3195 题目描述 P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任 ...

  8. [luogu3195 HNOI2008] 玩具装箱TOY (斜率优化dp)

    题目描述 P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1...N的N件玩具, ...

  9. 洛谷P3195 [HNOI2008]玩具装箱TOY——斜率优化DP

    题目:https://www.luogu.org/problemnew/show/P3195 第一次用斜率优化...其实还是有点云里雾里的: 网上的题解都很详细,我的理解就是通过把式子变形,假定一个最 ...

随机推荐

  1. IntelliJ IDEA如何激活?

    本文使用的IDEA的版本是:14.0.3 下载IDEA授权服务器(下载地址见最后),并解压,打开解压后的IntelliJIDEALicenseServer目录,可以看到如下的两个文件: Intelli ...

  2. div在另一个div居中对齐

    position:fixed; top:0; right:0; left:0; bottom:0; margin:auto;

  3. arcgis api 3.x for js 实现克里金插值渲染图不依赖 GP 服务(附源码下载)

    前言 关于本篇功能实现用到的 api 涉及类看不懂的,请参照 esri 官网的 arcgis api 3.x for js:esri 官网 api,里面详细的介绍 arcgis api 3.x 各个类 ...

  4. iPhone手机怎么投影到MacPro上

    https://www.bilibili.com/video/av27255821/ 2.使用Refletor,记得电脑和手机使用同一个wifi

  5. Easyui 关闭jquery-easui tab标签页前触发事件

    关闭jquery-easui tab标签页前触发事件 by:授客 QQ:1033553122 测试环境 jquery-easyui-1.5.3 需求场景 点击父页面tab 页关闭按钮时,需要做判断,判 ...

  6. 关于写作那些事之利用 js 统计各大博客阅读量

    在日常文章数据统计的过程中,纯手动方式已经难以应付,于是乎,逐步开始了程序介入方式进行统计. 在上一节中,探索利用 csv 文件格式进行文章数据统计,本来以为能够应付一阵子,没想到仅仅一天我就放弃了. ...

  7. 未能加载文件或程序集“System.Web.Mvc, Version=5.2.4.0, Culture=neutral, PublicKeyToken=31bf3856ad364e35”或它的某一个依赖项

    楼主创建项目的时候选择的是5.2.4的版本,但是后来改成了5.0.0于是出现了这个错误,解决的方法倒也简单 将View文件夹下 web.config文件中 以下两处 版本改成当前版本就行了

  8. JQ表格隔行换色

    <style type="text/css"> html, body { margin: 0; padding: 0; font-size: 15px; font-fa ...

  9. asp.net webapi 的Request如何获取参数

    public class BaseApiController : ApiController { private HttpRequestBase _request; /// 全局Requests对象 ...

  10. Redis 由浅入深

    1.redis是什么? redis是nosql(也是个巨大的map) 单线程,但是可处理1秒10w的并发(数据都在内存中) 使用java对redis进行操作类似jdbc接口标准对mysql,有各类实现 ...