神经网络——反向传播BP算法公式推导
在神经网络中,当我们的网络层数越来越多时,网络的参数也越来越多,如何对网络进行训练呢?我们需要一种强大的算法,无论网络多复杂,都能够有效的进行训练。在众多的训练算法中,其中最杰出的代表就是BP算法,它是至今最成功的神经网络学习算法。在实际任务中,大部分都是使用的BP算法来进行网络训练的。值得一提的是,BP算法不仅适用于多层前馈网络,对于其他类型的神经网络,例如:训练卷积神经网络和递归神经网络。
由于推导过程太多公式,因而我使用的word的截图。(推导过程参考的是周志华老师的《机器学习》(西瓜书))
通常,标准BP算法和累积BP算法都很常用,标准BP算法每次更新只使用单个样本,因而参数更新的非常频繁,而且更新的效果可能因为不同的样本出现抵消的情况。因此,达到相同的累积误差极小值,标准BP算法可能需要迭代更多的次数。累积BP算法采用整个训练集的误差进行更新,其更新的频率较低,但累积误差下降到一定的程度后,进一步的下降将会非常缓慢,尤其是在训练集很大的时候,这是标准BP算法可能会获得而较好的效果。
神经网络——反向传播BP算法公式推导的更多相关文章
- 前馈神经网络-反向传播(Back Propagation)公式推导走读
构造:输入神经元个数等于输入向量维度,输出神经元个数等于输出向量维度.(x1=(1,2,3),则需要三个输入神经元) 一 前向后传播 隐层:
- 反向传播BP算法
前向传播模型 一般我们使用的公式是: \[ a=\frac{1}{1+\exp \left(-\left(w^{T} x+b\right)\right)} = \frac{1}{1+\exp \lef ...
- 人工神经网络反向传播算法(BP算法)证明推导
为了搞明白这个没少在网上搜,但是结果不尽人意,最后找到了一篇很好很详细的证明过程,摘抄整理为 latex 如下. (原文:https://blog.csdn.net/weixin_41718085/a ...
- 神经网络,前向传播FP和反向传播BP
1 神经网络 神经网络就是将许多个单一“神经元”联结在一起,这样,一个“神经元”的输出就可以是另一个“神经元”的输入.例如,下图就是一个简单的神经网络: 我们使用圆圈来表示神经网络的输入,标上“”的圆 ...
- 神经网络反向传播算法&&卷积神经网络
听一遍课程之后,我并不太明白这个算法的奇妙之处?? 为啥? 神经网络反向传播算法 神经网络的训练依靠反向传播算法,最开始输入层输入特征向量,网络层计算获得输出,输出层发现输出和正确的类号不一样,这时就 ...
- BP神经网络反向传播之计算过程分解(详细版)
摘要:本文先从梯度下降法的理论推导开始,说明梯度下降法为什么能够求得函数的局部极小值.通过两个小例子,说明梯度下降法求解极限值实现过程.在通过分解BP神经网络,详细说明梯度下降法在神经网络的运算过程, ...
- 手写BP(反向传播)算法
BP算法为深度学习中参数更新的重要角色,一般基于loss对参数的偏导进行更新. 一些根据均方误差,每层默认激活函数sigmoid(不同激活函数,则更新公式不一样) 假设网络如图所示: 则更新公式为: ...
- 今天开始学Pattern Recognition and Machine Learning (PRML),章节5.2-5.3,Neural Networks神经网络训练(BP算法)
转载请注明出处:http://www.cnblogs.com/xbinworld/p/4265530.html 这一篇是整个第五章的精华了,会重点介绍一下Neural Networks的训练方法——反 ...
- 浅层神经网络 反向传播推导:MSE softmax
基础:逻辑回归 Logistic 回归模型的参数估计为什么不能采用最小二乘法? logistic回归模型的参数估计问题不能“方便地”定义“误差”或者“残差”. 对单个样本: 第i层的权重W[i]维度的 ...
随机推荐
- 大型EMR电子病历源码三甲医院医疗信息管理系统软件网络版
详情请点击查看 开发环境 :VS2010 + C# + ORACLE系统简介:1各种记录的书写,并可保留修改痕迹 在各种记录的书写过程中,根据系统提供的首次护理记录.一般护理记录.术前术后护理记录等模 ...
- YOLO_Online 将深度学习最火的目标检测做成在线服务实战经验分享
YOLO_Online 将深度学习最火的目标检测做成在线服务 第一次接触 YOLO 这个目标检测项目的时候,我就在想,怎么样能够封装一下让普通人也能够体验深度学习最火的目标检测项目,不需要关注技术细节 ...
- Lintcode400 Maximum Gap solution 题解
[题目描述] Given an unsorted array, find the maximum difference between the successive elements in its s ...
- 基于reflectasm打造自己的通用bean工具
业务场景: 在很多的业务系统中,erp,crm系统中,有许多的对象信息都是拆开来的,例如一个商品,那可能他的商品名称,商品等主要信息放在一个表(衍生出来一个对象),他的附属信息(商品图片,规格,价格等 ...
- 50行ruby代码开发一个区块链
区块链是什么?作为一个Ruby开发者,理解区块链的最好办法,就是亲自动手实现一个.只需要50行Ruby代码你就能彻底理解区块链的核心原理! 区块链 = 区块组成的链表? blockchain.ruby ...
- zabbix监控mysql性能
使用zabbix监控mysql的三种方式 1.只是安装agent 2.启用模板监控 3.启用自定义脚本的模板监控 zabbix中默认有mysql的监控模板.默认已经在zabbix2.2及以上的版本中. ...
- Centos 6.9 安装xtrabackup-2.4.8 通用包,yum安装,全量备份,增量备份
xtrabackup-2.4.8的安装及使用 Xtrabackup是由percona提供的mysql数据库备份工具,据官方介绍,这也是世界上惟一一款开源的能够对innodb和xtradb数据库进行热备 ...
- java里的堆内存于栈内存的区别
这个区别对于我们来说并不大,这是内存分配的两种方法.一般代码逻辑,简单变量,结构体都是放入栈中,而对象,以及被装箱的数据是放入堆中的.简单来说,栈就是一个很长的栈(数据结构中的栈,如果不理解可以当做是 ...
- SQL关于IN和EXISTS的用法和区别的比较
1.exist,not exist一般都是与子查询一起使用. In可以与子查询一起使用,也可以直接in (a,b.....).2.exist会针对子查询的表使用索引. not exist会对主子查询都 ...
- vi/vim的常用快捷键
vi/vim分为 命令模式,插入模式(编辑模式),末行模式(最后一行) 模式的转换 ① 其它模式==>正常模式 按 Esc键 ②正常模式==>插入模式 按 i 在光标前插入 按 I 在行首 ...