BZOJ_2039_[2009国家集训队]employ人员雇佣_ 最小割

Description

作为一个富有经营头脑的富翁,小L决定从本国最优秀的经理中雇佣一些来经营自己的公司。这些经理相互之间合作有一个贡献指数,(我们用Ei,j表示i经理对j经理的了解程度),即当经理i和经理j同时被雇佣时,经理i会对经理j做出贡献,使得所赚得的利润增加Ei,j。当然,雇佣每一个经理都需要花费一定的金钱Ai,对于一些经理可能他做出的贡献不值得他的花费,那么作为一个聪明的人,小L当然不会雇佣他。 然而,那些没有被雇佣的人会被竞争对手所雇佣,这个时候那些人会对你雇佣的经理的工作造成影响,使得所赚得的利润减少Ei,j(注意:这里的Ei,j与上面的Ei,j 是同一个)。 作为一个效率优先的人,小L想雇佣一些人使得净利润最大。你可以帮助小L解决这个问题吗?

Input

第一行有一个整数N<=1000表示经理的个数 第二行有N个整数Ai表示雇佣每个经理需要花费的金钱 接下来的N行中一行包含N个数,表示Ei,j,即经理i对经理j的了解程度。(输入满足Ei,j=Ej,i)

Output

第一行包含一个整数,即所求出的最大值。

Sample Input

3
3 5 100
0 6 1
6 0 2
1 2 0

Sample Output

1
【数据规模和约定】
20%的数据中N<=10
50%的数据中N<=100
100%的数据中 N<=1000, Ei,j<=maxlongint, Ai<=maxlongint


转化为损失最少的最小割模型。

建立$S$,$T$分别表示选或不选,便于用$S$,$T$割集表示方案。

然后设两个经理$i$和$j$,连这样几条边$S->i(x1),S->j(x2),i->j(x3),i->T(x4),j->T(x5)$,括号内代表容量,$x$为设的未知数。

假设$i$和$j$都选,那么要割掉到$T$的两条边$x4+x5$。假设都不选,则需要割掉$S$连出的两条边$x1+x2$。

$i$选$j$不选,则需要割掉$x2+x3+x4$三条边。

然后分别和真正的收益对应一下,可以得到$x1=\sum\limits_{k=1}^{n}e[i][k]$ $x3=2*e[i][j]$ $x4=a[i]$。

于是建图跑最小割即可。

代码:

#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std;
typedef long long ll;
inline char nc() {
static char buf[100000],*p1,*p2;
return p1==p2&&(p2=(p1=buf)+fread(buf,1,100000,stdin),p1==p2)?EOF:*p1++;
}
inline int rd() {
register int x=0;
register char s=nc();
while(s<'0'||s>'9') s=nc();
while(s>='0'&&s<='9') x=(x<<3)+(x<<1)+s-'0',s=nc();
return x;
}
#define N 1050
#define M 3000050
#define S (n+1)
#define T (n+2)
#define inf (1ll<<60)
int n,a[N],e[N][N];
struct Dinic {
int head[N],to[M],nxt[M],cnt;
int dep[N],Q[N],l,r;
ll flow[M],sum;
inline void add(int u,int v,ll f) {
to[++cnt]=v; nxt[cnt]=head[u]; head[u]=cnt; flow[cnt]=f;
to[++cnt]=u; nxt[cnt]=head[v]; head[v]=cnt; flow[cnt]=0;
}
bool bfs() {
memset(dep,0,sizeof(dep));
l=r=0; Q[r++]=S; dep[S]=1;
while(l<r) {
int x=Q[l++],i;
for(i=head[x];i;i=nxt[i]) {
if(!dep[to[i]]&&flow[i]) {
dep[to[i]]=dep[x]+1;
if(to[i]==T) return 1;
Q[r++]=to[i];
}
}
}
return 0;
}
ll dfs(int x,ll mf) {
if(x==T) return mf;
ll nf=0;
int i;
for(i=head[x];i;i=nxt[i]) {
if(dep[to[i]]==dep[x]+1&&flow[i]) {
ll tmp=dfs(to[i],min(mf-nf,flow[i]));
if(!tmp) dep[to[i]]=0;
nf+=tmp;
flow[i]-=tmp;
flow[i^1]+=tmp;
if(nf==mf) break;
}
}
return nf;
}
void dinic() {
ll f;
while(bfs()) while((f=dfs(S,inf))!=0) sum-=f;
printf("%lld\n",sum);
}
}G;
int main() {
G.cnt=1;
n=rd();
int i,j;
for(i=1;i<=n;i++) a[i]=rd();
for(i=1;i<=n;i++) {
ll now=0;
for(j=1;j<=n;j++) {
e[i][j]=rd();
G.sum+=e[i][j];
now+=e[i][j];
G.add(i,j,2*e[i][j]);
}
G.add(S,i,now);
G.add(i,T,a[i]);
}
G.dinic();
}

BZOJ_2039_[2009国家集训队]employ人员雇佣_ 最小割的更多相关文章

  1. 【BZOJ 2039】 2039: [2009国家集训队]employ人员雇佣 (最小割)

    2039: [2009国家集训队]employ人员雇佣 Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 1511  Solved: 728 Descri ...

  2. bzoj2039: [2009国家集训队]employ人员雇佣(最小割)

    传送门 膜一下大佬->这里 不难看出这是一个最小割的模型(然而我看不出来) 我们从源点向每一个点连边,容量为他能带来的总收益(也就是他能对其他所有经理产生的贡献) 然后从每一个点向汇点连边,容量 ...

  3. BZOJ 2039:[2009国家集训队]employ人员雇佣(最小割)

    http://www.lydsy.com/JudgeOnline/problem.php?id=2039 题意:中文题意. 思路:一开始想着和之前做的最大权闭合图有点像,但是如果把边全部当成点的话,那 ...

  4. bzoj 2039: [2009国家集训队]employ人员雇佣【最小割】

    一开始在https://www.cnblogs.com/lokiii/p/10770919.html基础上连(i,j,b[i][j])建了个极丑的图T掉了--把dinic换成isap勉强能卡过 首先因 ...

  5. BZOJ 2039: [2009国家集训队]employ人员雇佣

    2039: [2009国家集训队]employ人员雇佣 Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 1369  Solved: 667[Submit ...

  6. 【BZOJ2039】[2009国家集训队]employ人员雇佣 最小割

    [BZOJ2039][2009国家集训队]employ人员雇佣 Description 作为一个富有经营头脑的富翁,小L决定从本国最优秀的经理中雇佣一些来经营自己的公司.这些经理相互之间合作有一个贡献 ...

  7. BZOJ2039 [2009国家集训队]employ人员雇佣

    AC通道:http://www.lydsy.com/JudgeOnline/problem.php?id=2039 鉴于一开始看题如果不仔细是看不懂题目的,还是说一下题目大意 [题目大意]:给定n个人 ...

  8. BZOJ 2039 / Luogu P1791 [2009国家集训队]employ人员雇佣 (最小割)

    题面 BZOJ传送门 Luogu传送门 分析 考虑如何最小割建图,因为这仍然是二元关系,我们可以通过解方程来确定怎么建图,具体参考论文 <<浅析一类最小割问题 湖南师大附中 彭天翼> ...

  9. 2039: [2009国家集训队]employ人员雇佣

    任意门 Description 作为一个富有经营头脑的富翁,小L决定从本国最优秀的经理中雇佣一些来经营自己的公司.这些经理相互之间合作有一个贡献指数,(我们用Ei,j表示i经理对j经理的了解程度),即 ...

随机推荐

  1. css中bfc和ifc

    bfc定义:块级格式化上下文,他是一个独立的渲染区域,他规定了这个内部如何布局,并且与这个区域的外部毫不相干.BFC布局规则: 内部的Box会在垂直方向,一个接一个地放置.Box垂直方向的距离由mar ...

  2. SDWebImage底层实现原理

    SDWebImage底层实现有沙盒缓存机制,主要由三块组成 1.内存图片缓存2.内存操作缓存3.磁盘沙盒缓存内部实现过程:第一步,下载SDWebImage,导入工程. 第二步,在需要的地方导入头文件 ...

  3. Python笔记之 - 一张截图诠释"文件读写" !

    Python笔记之 - 一张截图诠释"文件读写" ! 源代码如下: # 文件读写 str_test1 = "先创建txt文件再写入内容: 我是大帅哥" # wi ...

  4. django1.8升级1.9的几个问题

    1.URL Pattern警告,旧式的URL定义方法将在1.10版本中被废止,所以这个版本仅仅是警告,不过这个警告让我看到了升级1.9这个非LTS版本的意义. 2.Django自身所带Models变化 ...

  5. Java 包装类笔记

    @(JDK)[包装类] Java 包装类笔记 当需要使用到集合的时候,如果是基础数据类型,需要转换为包装类,再使用,在JDK1.5之前,每次使用的时候,都需要手动转换为包装类(称为装箱),然后在使用的 ...

  6. C#学习笔记 day_two

    C#学习笔记 day two Chapter 2 c#基本概念 2.1编译与运行hello world应用程序 点击f5或者vs2010中的运行图标即可 2.3C#的概念拓展 (1)继承性:一个类含有 ...

  7. Robot framework之元素定位实战

    1.1  id 和name 定位 Web页面都是由许多标签和元素组成的,每个标签或元素都是很多属性,好比一个人   id 和name 可以看作一个人的身份证号和姓名.下面看下教育局招生系统的用户名输入 ...

  8. Vue中的scoped及穿透方法

    何为scoped? 在vue文件中的style标签上,有一个特殊的属性:scoped.当一个style标签拥有scoped属性时,它的CSS样式就只能作用于当前的组件,也就是说,该样式只能适用于当前组 ...

  9. tensorflow 1.8, ubuntu 16.04, cuda 9.0, nvidia-390,安装踩坑指南。

    被tensorflow 1.8, ubuntu 16.04, cuda 9.0, nvidia-390折磨了5天,终于上坑,留下指南,造福后人. 1.先把依赖搞清楚: tensorflow 1.8依赖 ...

  10. Archlinux安裝指南(uefi+gpt)

    1.系统安装前的一些准备 首先在Archlinux官网下载镜像文件,然后刻录到U盘或光盘上.在我的机器上刻录arch镜像文件到U盘后启动不了,因为时间问题我没做过多的探索,所以后面直接刻录到光盘,用光 ...