[Luogu3377]【模板】左偏树(可并堆)
题面戳我
题目描述
如题,一开始有N个小根堆,每个堆包含且仅包含一个数。接下来需要支持两种操作:
操作1: 1 x y 将第x个数和第y个数所在的小根堆合并(若第x或第y个数已经被删除或第x和第y个数在用一个堆内,则无视此操作)
操作2: 2 x 输出第x个数所在的堆最小数,并将其删除(若第x个数已经被删除,则输出-1并无视删除操作)
输入输出格式
输入格式:
第一行包含两个正整数N、M,分别表示一开始小根堆的个数和接下来操作的个数。
第二行包含N个正整数,其中第i个正整数表示第i个小根堆初始时包含且仅包含的数。
接下来M行每行2个或3个正整数,表示一条操作,格式如下:
操作1 : 1 x y
操作2 : 2 x
输出格式:
输出包含若干行整数,分别依次对应每一个操作2所得的结果。
输入输出样例
输入样例#1:
5 5
1 5 4 2 3
1 1 5
1 2 5
2 2
1 4 2
2 2
输出样例#1:
1
2
说明
当堆里有多个最小值时,优先删除原序列的靠前的,否则会影响后续操作1导致WA。
时空限制:1000ms,128M
数据规模:
对于30%的数据:N<=10,M<=10
对于70%的数据:N<=1000,M<=1000
对于100%的数据:N<=100000,M<=100000
sol
左偏树模板题,考虑到要讲所以就把陈年代码翻出来写一写题解。
我们考虑到左偏树的一个非常优秀的性质:树高的期望是\(logn\)
所以判断是否在同一个堆中,只要暴力跳堆顶即可。
(其实也是可以写个并查集的啦)
其他就好说了。
code
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int MAX=100005;
int key[MAX],ls[MAX],rs[MAX],fa[MAX],dis[MAX],del[MAX],n,m;
int gi()
{
int x=0,w=1;char ch=getchar();
while ((ch<'0'||ch>'9')&&ch!='-') ch=getchar();
if (ch=='-') w=-1,ch=getchar();
while (ch>='0'&&ch<='9')
{
x=(x<<3)+(x<<1)+ch-'0';
ch=getchar();
}
return x*w;
}
int Merge(int A,int B)
{
if (!A) return B;
if (!B) return A;
if (key[A]>key[B]||(key[A]==key[B]&&A>B)) swap(A,B);
rs[A]=Merge(rs[A],B);
fa[rs[A]]=A;
if (dis[ls[A]]<dis[rs[A]]) swap(ls[A],rs[A]);
dis[A]=dis[rs[A]]+1;
return A;
}
void Delete(int A)
{
del[A]=1;
fa[ls[A]]=fa[rs[A]]=0;
Merge(ls[A],rs[A]);
}
int find(int x)
{
while (fa[x]) x=fa[x];
return x;
}
int main()
{
n=gi();m=gi();
for (int i=1;i<=n;i++) key[i]=gi();
while (m--)
{
int opt=gi();
if (opt==1)
{
int x=gi(),y=gi();
int fx=find(x),fy=find(y);
if (del[x]||del[y]||fx==fy) continue;
Merge(fx,fy);
}
else
{
int x=gi();
if (del[x]) printf("-1\n");
else
{
int fx=find(x);
printf("%d\n",key[fx]);
Delete(fx);
}
}
}
return 0;
}
[Luogu3377]【模板】左偏树(可并堆)的更多相关文章
- [note]左偏树(可并堆)
左偏树(可并堆)https://www.luogu.org/problemnew/show/P3377 题目描述 一开始有N个小根堆,每个堆包含且仅包含一个数.接下来需要支持两种操作: 操作1: 1 ...
- bzoj2809 [Apio2012]dispatching——左偏树(可并堆)
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2809 思路有点暴力和贪心,就是 dfs 枚举每个点作为管理者: 当然它的子树中派遣出去的忍者 ...
- [luogu3377][左偏树(可并堆)]
题目链接 思路 左偏树的模板题,参考左偏树学习笔记 对于这道题我是用一个并查集维护出了哪些点是在同一棵树上,也可以直接log的往上跳寻找根节点 代码 #include<cstdio> #i ...
- HDU3031 To Be Or Not To Be 左偏树 可并堆
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - HDU3031 题意概括 喜羊羊和灰太狼要比赛. 有R次比赛. 对于每次比赛,首先输入n,m,n表示喜羊羊和灰 ...
- HDU5818 Joint Stacks 左偏树,可并堆
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - HDU5818 题意概括 有两个栈,有3种操作. 第一种是往其中一个栈加入一个数: 第二种是取出其中一个栈的顶 ...
- BZOJ 4003: [JLOI2015]城池攻占 左偏树 可并堆
https://www.lydsy.com/JudgeOnline/problem.php?id=4003 感觉就是……普通的堆啊(暴论),因为这个堆是通过递归往右堆里加一个新堆或者新节点的,所以要始 ...
- Monkey King(左偏树 可并堆)
我们知道如果要我们给一个序列排序,按照某种大小顺序关系,我们很容易想到优先队列,的确很方便,但是优先队列也有解决不了的问题,当题目要求你把两个优先队列合并的时候,这就实现不了了 优先队列只有插入 删除 ...
- 洛谷 P3377 模板左偏树
题目:https://www.luogu.org/problemnew/show/P3377 左偏树的模板题: 加深了我对空 merge 的理解: 结构体的编号就是原序列的位置. 代码如下: #inc ...
- BZOJ 5494: [2019省队联测]春节十二响 (左偏树 可并堆)
题意 略 分析 稍微yy一下可以感觉就是一个不同子树合并堆,然后考场上写了一发左偏树,以为100分美滋滋.然而发现自己傻逼了,两个堆一一对应合并后剩下的一坨直接一次合并进去就行了.然鹅我这个sb把所有 ...
- BZOJ1455 罗马游戏 左偏树 可并堆
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1455 题意概括 n个人,2种操作. 一种是合并两个人团,一种是杀死某一个人团的最弱的人. 题解 左 ...
随机推荐
- Centos 6.7 KVM下安装windows 7系统
装windows 虚拟机之前你需要做以下准备工作:A.下载windows 镜像文件和 windows 的驱动iso 文件到本地,然后上传至服务器的某个目录(当然你也可以直接在服务器上下载):B.你本地 ...
- centos7时间同步
用ntpdate从时间服务器更新时间 1.如果你的linux系统根本没有ntpdate这个命令 yum install -y ntp 2.安装完了之后,你不要做什么配置,也不需要,直接测试一下 [ro ...
- Python 中的闭包
通常来说,函数中的局部变量在函数调用结束的时候不能再被引用,所分配的空间也会被回收. 但是通过闭包这种技术,函数调用结束了,它的局部变量的值还可以保存在闭包里. 试举一例: def make_adde ...
- 1.2 decimal模块
>>> 0.1 + 0.1 +0.1 == 0.3 False >>> >>> print(0.1 + 0.1 + 0.1) 0.30000000 ...
- C++学习笔记第三天:类、虚函数、双冒号
类 class Box { public: double length; // 盒子的长度 double breadth; // 盒子的宽度 double height; // 盒子的高度 }; 类成 ...
- PAT 1002. A+B for Polynomials
思路:就是两个多项式做加法–指数相同的相加即可,输出的时候按照指数递减输出,并且系数为0的项不输出. AC代码 #include <stdio.h> #include <vector ...
- hdu 2018递推
第n月的牛的数量由第n-1个月的老牛加上n-1个月新生的小牛,得到公式F(n)=F(n-1)+F(n-3) AC代码: #include<cstdio> const int maxn=55 ...
- spring oauth2 ,spring security整合oauth2.0 JdbcTokenStore实现 解决url-pattern .do .action
参考以下两个文章: http://www.cnblogs.com/0201zcr/p/5328847.html http://wwwcomy.iteye.com/blog/2230265 web.xm ...
- bonding实现网卡负载均衡与高可用
bondingLinux bonding 驱动提供了一个把多个网络接口设备捆绑为单个的网络接口设置来使用,用于网络负载均衡及网络冗余.他是解决同一个IP下突破网卡的流量限制的工具,网卡网线对吞吐量是有 ...
- H3C虚拟化之IRF
SA system-view irf domain 10 irf member 1 ren 1 y int ten 1/0/50 shu qu irf-port 1/1 port group int ...