【Luogu3808】多项式乘法FFT(FFT)
题目戳我
一道模板题
自己尝试证明了大部分。。。
剩下的还是没太证出来。。。
所以就是一个模板放在这里
以后再来补东西吧。。。。
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<complex>
#include<algorithm>
using namespace std;
#define MAX 2700000
inline int read()
{
register int x=0,t=1;
register char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-'){t=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=x*10+ch-48;ch=getchar();}
return x*t;
}
const double Pi=acos(-1);
int N,M,r[MAX],l;
complex<double> a[MAX],b[MAX];
void FFT(complex<double> *P,int opt)
{
for(int i=0;i<N;++i)if(i<r[i])swap(P[i],P[r[i]]);
for(int i=1;i<N;i<<=1)
{
complex<double> W(cos(Pi/i),opt*sin(Pi/i));
for(int p=i<<1,j=0;j<N;j+=p)
{
complex<double> w(1,0);
for(int k=0;k<i;k++,w*=W)
{
complex<double> X=P[j+k],Y=w*P[j+k+i];
P[j+k]=X+Y;P[j+k+i]=X-Y;
}
}
}
}
int main()
{
N=read();M=read();
for(int i=0;i<=N;++i)a[i]=read();
for(int i=0;i<=M;++i)b[i]=read();
M+=N;
for(N=1;N<=M;N<<=1)++l;
for(int i=0;i<N;++i)r[i]=(r[i>>1]>>1)|((i&1)<<(l-1));
FFT(a,1);
FFT(b,1);
for(int i=0;i<=N;++i)a[i]=a[i]*b[i];
FFT(a,-1);
for(int i=0;i<=M;++i)printf("%d ",(int)(a[i].real()/N+0.5));
return 0;
}
【Luogu3808】多项式乘法FFT(FFT)的更多相关文章
- FFT/NTT总结+洛谷P3803 【模板】多项式乘法(FFT)(FFT/NTT)
前言 众所周知,这两个东西都是用来算多项式乘法的. 对于这种常人思维难以理解的东西,就少些理解,多背板子吧! 因此只总结一下思路和代码,什么概念和推式子就靠巨佬们吧 推荐自为风月马前卒巨佬的概念和定理 ...
- 洛谷P3803 【模板】多项式乘法(FFT)
P3803 [模板]多项式乘法(FFT) 题目背景 这是一道FFT模板题 题目描述 给定一个n次多项式F(x),和一个m次多项式G(x). 请求出F(x)和G(x)的卷积. 输入输出格式 输入格式: ...
- 洛谷 P3803 【模板】多项式乘法(FFT)
题目链接:P3803 [模板]多项式乘法(FFT) 题意 给定一个 \(n\) 次多项式 \(F(x)\) 和一个 \(m\) 次多项式 \(G(x)\),求 \(F(x)\) 和 \(G(x)\) ...
- 【luogu P3803】【模板】多项式乘法(FFT)
[模板]多项式乘法(FFT) 题目链接:luogu P3803 题目大意 给你两个多项式,要你求这两个多项式乘起来得到的多项式.(卷积) 思路 系数表示法 就是我们一般来表示一个多项式的方法: \(A ...
- 多项式乘法,FFT与NTT
多项式: 多项式?不会 多项式加法: 同类项系数相加: 多项式乘法: A*B=C $A=a_0x^0+a_1x^1+a_2x^2+...+a_ix^i+...+a_{n-1}x^{n-1}$ $B=b ...
- 【总结】对FFT的理解 / 【洛谷 P3803】 【模板】多项式乘法(FFT)
题目链接 \(\Huge\text{无图,慎入}\) \(FFT\)即快速傅里叶变换,用于加速多项式乘法. 如果暴力做卷积的话就是一个多项式的每个单项式去乘另一个多项式然后加起来,时间复杂度为\(O( ...
- UVALive - 6886 Golf Bot 多项式乘法(FFT)
题目链接: http://acm.hust.edu.cn/vjudge/problem/129724 Golf Bot Time Limit: 15000MS 题意 给你n个数,m个查询,对于每个查询 ...
- 多项式乘法(FFT)模板 && 快速数论变换(NTT)
具体步骤: 1.补0:在两个多项式最前面补0,得到两个 $2n$ 次多项式,设系数向量分别为 $v_1$ 和 $v_2$. 2.求值:用FFT计算 $f_1 = DFT(v_1)$ 和 $f_2=DF ...
- 【UOJ 34】 多项式乘法 (FFT)
[题意] 给你两个多项式,请输出乘起来后的多项式. 先打一个递归版本的模板... #include<cstdio> #include<iostream> #include< ...
- [洛谷P3803] 【模板】多项式乘法(FFT, NTT)
题目大意:$FFT$,给你两个多项式,请输出乘起来后的多项式. 题解:$FFT$,由于给的$n$不是很大,也可以用$NTT$做 卡点:无 C++ Code: FFT: #include <cs ...
随机推荐
- OpenLayer3调用天地图,拖拽后,地图消失的问题[已解决]
拖拽后,地图直接消失了,而且右上角的坐标变成了NaN,NaN 后来经过测试发现,原来是自己封装有问题,坐标点一定要用parseFloat()转换下,但不清楚为什么页面刚开始加载的时候没有问题,总之能解 ...
- LINUX服务器下用root登录ftp
因为安全方面的原因,root用户是默认不能登录ftp服务的. 如果一定要用root登录,则: 1.删除或注释/etc/vsftpd.ftpusers中的root 2.删除或注释/etc/vsftpd. ...
- jq自定义多选下拉列表框
多选选择国家插件 https://gitee.com/richard1015/dropDownList
- Netbeans文件被误删怎么办?
辛辛苦苦写的代码突然不见了,上午还是有的,哪去了?怎么办? 破解办法: 1,良好的版本管理工具(git||svn)使用习惯,代码每天上传更新,技术文件有丢失,也就一天的. 2,Netbeans提供的备 ...
- UVA - 11270 轮廓线DP
其实这题还能用状压DP解决,可是时间达到2000ms只能过掉POJ2411.状压DP解法详见状压DP解POJ2411 贴上POJ2411AC代码 : 2000ms 时间复杂度h*w*(2^w)*(2^ ...
- hdu4825 01字典树+贪心
从高位向低位构造字典树,因为高位得到的数更大. AC代码: #include<cstdio> using namespace std; typedef long long LL; cons ...
- MyCat 读写分离,负载均衡
docker mysql 主从复制 配合Spring 事务 注意事项 配置好JRE,安装好MYCAT 在mysql主库创建表,会同步到从库 CREATE TABLE `user` ( `id` ) N ...
- Ubuntu搭建Hadoop的踩坑之旅(一)
本文将介绍如何使用虚拟机一步步从安装Ubuntu到搭建Hadoop伪分布式集群. 本文主要参考:在VMware下安装Ubuntu并部署Hadoop1.2.1分布式环境 - CSDN博客 一.所需的环境 ...
- Netty(二):Netty为啥去掉支持AIO?
匠心零度 转载请注明原创出处,谢谢! 疑惑 我们都知道bio nio 以及nio2(也就是aio),如果不是特别熟悉可以看看我之前写的网络 I/O模型,那么netty为什么还经常看到类似下面的这段代码 ...
- linux系统/sbin/init执行过程
对于Linux的启动过程,之前一直都是研究到内核运行/sbin/init,启动第一个用户进程为止,因为这部分一直都是在内核态工作,所以对于学习内核还是有帮助的,当时/sbin/init之后的过程也需要 ...