【TensorFlow篇】--Tensorflow框架实现SoftMax模型识别手写数字集
一、前述
本文讲述用Tensorflow框架实现SoftMax模型识别手写数字集,来实现多分类。
同时对模型的保存和恢复做下示例。
二、具体原理
代码一:实现代码
#!/usr/bin/python
# -*- coding: UTF-8 -*-
# 文件名: 12_Softmax_regression.py from tensorflow.examples.tutorials.mnist import input_data
import tensorflow as tf # mn.SOURCE_URL = "http://yann.lecun.com/exdb/mnist/"
my_mnist = input_data.read_data_sets("MNIST_data_bak/", one_hot=True)#从本地路径加载进来 # The MNIST data is split into three parts:
# 55,000 data points of training data (mnist.train)#训练集图片
# 10,000 points of test data (mnist.test), and#测试集图片
# 5,000 points of validation data (mnist.validation).#验证集图片 # Each image is 28 pixels by 28 pixels # 输入的是一堆图片,None表示不限输入条数,784表示每张图片都是一个784个像素值的一维向量
# 所以输入的矩阵是None乘以784二维矩阵
x = tf.placeholder(dtype=tf.float32, shape=(None, 784)) #x矩阵是m行*784列
# 初始化都是0,二维矩阵784乘以10个W值 #初始值最好不为0
W = tf.Variable(tf.zeros([784, 10]))#W矩阵是784行*10列
b = tf.Variable(tf.zeros([10]))#bias也必须有10个 y = tf.nn.softmax(tf.matmul(x, W) + b)# x*w 即为m行10列的矩阵就是y #预测值 # 训练
# labels是每张图片都对应一个one-hot的10个值的向量
y_ = tf.placeholder(dtype=tf.float32, shape=(None, 10))#真实值 m行10列
# 定义损失函数,交叉熵损失函数
# 对于多分类问题,通常使用交叉熵损失函数
# reduction_indices等价于axis,指明按照每行加,还是按照每列加
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y),
reduction_indices=[1]))#指明按照列加和 一列是一个类别
train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)#将损失函数梯度下降 #0.5是学习率 # 初始化变量
sess = tf.InteractiveSession()#初始化Session
tf.global_variables_initializer().run()#初始化所有变量
for _ in range(1000):
batch_xs, batch_ys = my_mnist.train.next_batch(100)#每次迭代取100行数据
sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys})
#每次迭代内部就是求梯度,然后更新参数
# 评估 # tf.argmax()是一个从tensor中寻找最大值的序号 就是分类号,tf.argmax就是求各个预测的数字中概率最大的那一个
correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1)) # 用tf.cast将之前correct_prediction输出的bool值转换为float32,再求平均
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) # 测试
print(accuracy.eval({x: my_mnist.test.images, y_: my_mnist.test.labels})) # 总结
# 1,定义算法公式,也就是神经网络forward时的计算
# 2,定义loss,选定优化器,并指定优化器优化loss
# 3,迭代地对数据进行训练
# 4,在测试集或验证集上对准确率进行评测
代码二:保存模型
# 有时候需要把模型保持起来,有时候需要做一些checkpoint在训练中
# 以致于如果计算机宕机,我们还可以从之前checkpoint的位置去继续
# TensorFlow使得我们去保存和加载模型非常方便,仅需要去创建Saver节点在构建阶段最后
# 然后在计算阶段去调用save()方法 from tensorflow.examples.tutorials.mnist import input_data
import tensorflow as tf # mn.SOURCE_URL = "http://yann.lecun.com/exdb/mnist/"
my_mnist = input_data.read_data_sets("MNIST_data_bak/", one_hot=True) # The MNIST data is split into three parts:
# 55,000 data points of training data (mnist.train)
# 10,000 points of test data (mnist.test), and
# 5,000 points of validation data (mnist.validation). # Each image is 28 pixels by 28 pixels # 输入的是一堆图片,None表示不限输入条数,784表示每张图片都是一个784个像素值的一维向量
# 所以输入的矩阵是None乘以784二维矩阵
x = tf.placeholder(dtype=tf.float32, shape=(None, 784))
# 初始化都是0,二维矩阵784乘以10个W值
W = tf.Variable(tf.zeros([784, 10]))
b = tf.Variable(tf.zeros([10])) y = tf.nn.softmax(tf.matmul(x, W) + b) # 训练
# labels是每张图片都对应一个one-hot的10个值的向量
y_ = tf.placeholder(dtype=tf.float32, shape=(None, 10))
# 定义损失函数,交叉熵损失函数
# 对于多分类问题,通常使用交叉熵损失函数
# reduction_indices等价于axis,指明按照每行加,还是按照每列加
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y),
reduction_indices=[1]))
train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy) # 初始化变量
init = tf.global_variables_initializer()
# 创建Saver()节点
saver = tf.train.Saver()#在运算之前,初始化之后 n_epoch = 1000 with tf.Session() as sess:
sess.run(init)
for epoch in range(n_epoch):
if epoch % 100 == 0:
save_path = saver.save(sess, "./my_model.ckpt")#每跑100次save一次模型,可以保证容错性
#直接保存session即可。 batch_xs, batch_ys = my_mnist.train.next_batch(100)#每一批次跑的数据 用m行数据/迭代次数来计算出来。
sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys}) best_theta = W.eval()
save_path = saver.save(sess, "./my_model_final.ckpt")#保存最后的模型,session实际上保存的上面所有的数据
代码三:恢复模型
from tensorflow.examples.tutorials.mnist import input_data
import tensorflow as tf # mn.SOURCE_URL = "http://yann.lecun.com/exdb/mnist/"
my_mnist = input_data.read_data_sets("MNIST_data_bak/", one_hot=True) # The MNIST data is split into three parts:
# 55,000 data points of training data (mnist.train)
# 10,000 points of test data (mnist.test), and
# 5,000 points of validation data (mnist.validation). # Each image is 28 pixels by 28 pixels # 输入的是一堆图片,None表示不限输入条数,784表示每张图片都是一个784个像素值的一维向量
# 所以输入的矩阵是None乘以784二维矩阵
x = tf.placeholder(dtype=tf.float32, shape=(None, 784))
# 初始化都是0,二维矩阵784乘以10个W值
W = tf.Variable(tf.zeros([784, 10]))
b = tf.Variable(tf.zeros([10])) y = tf.nn.softmax(tf.matmul(x, W) + b)
# labels是每张图片都对应一个one-hot的10个值的向量
y_ = tf.placeholder(dtype=tf.float32, shape=(None, 10)) saver = tf.train.Saver() with tf.Session() as sess:
saver.restore(sess, "./my_model_final.ckpt")#把路径下面所有的session的数据加载进来 y y_head还有模型都保存下来了。 # 评估
# tf.argmax()是一个从tensor中寻找最大值的序号,tf.argmax就是求各个预测的数字中概率最大的那一个
correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1)) # 用tf.cast将之前correct_prediction输出的bool值转换为float32,再求平均
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) # 测试
print(accuracy.eval({x: my_mnist.test.images, y_: my_mnist.test.labels}))
【TensorFlow篇】--Tensorflow框架实现SoftMax模型识别手写数字集的更多相关文章
- 李宏毅 Keras手写数字集识别(优化篇)
在之前的一章中我们讲到的keras手写数字集的识别中,所使用的loss function为‘mse’,即均方差.那我们如何才能知道所得出的结果是不是overfitting?我们通过运行结果中的trai ...
- 如何用卷积神经网络CNN识别手写数字集?
前几天用CNN识别手写数字集,后来看到kaggle上有一个比赛是识别手写数字集的,已经进行了一年多了,目前有1179个有效提交,最高的是100%,我做了一下,用keras做的,一开始用最简单的MLP, ...
- Python实现神经网络算法识别手写数字集
最近忙里偷闲学习了一点机器学习的知识,看到神经网络算法时我和阿Kun便想到要将它用Python代码实现.我们用了两种不同的方法来编写它.这里只放出我的代码. MNIST数据集基于美国国家标准与技术研究 ...
- Pytorch卷积神经网络识别手写数字集
卷积神经网络目前被广泛地用在图片识别上, 已经有层出不穷的应用, 如果你对卷积神经网络充满好奇心,这里为你带来pytorch实现cnn一些入门的教程代码 #首先导入包 import torchfrom ...
- keras和tensorflow搭建DNN、CNN、RNN手写数字识别
MNIST手写数字集 MNIST是一个由美国由美国邮政系统开发的手写数字识别数据集.手写内容是0~9,一共有60000个图片样本,我们可以到MNIST官网免费下载,总共4个.gz后缀的压缩文件,该文件 ...
- tensorflow笔记(四)之MNIST手写识别系列一
tensorflow笔记(四)之MNIST手写识别系列一 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7436310.html ...
- tensorflow笔记(五)之MNIST手写识别系列二
tensorflow笔记(五)之MNIST手写识别系列二 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7455233.html ...
- [机器学习] keras:MNIST手写数字体识别(DeepLearning 的 HelloWord程序)
深度学习界的Hello Word程序:MNIST手写数字体识别 learn from(仍然是李宏毅老师<机器学习>课程):http://speech.ee.ntu.edu.tw/~tlka ...
- TensorFlow下利用MNIST训练模型识别手写数字
本文将参考TensorFlow中文社区官方文档使用mnist数据集训练一个多层卷积神经网络(LeNet5网络),并利用所训练的模型识别自己手写数字. 训练MNIST数据集,并保存训练模型 # Pyth ...
随机推荐
- GitHub 系列之「Git 进阶」
1.用户名和邮箱 我们知道我们进行的每一次 commit 都会产生一条 log,这条 log 标记了提交人的姓名与邮箱,以便其他人方便的查看与联系提交人,所以我们在进行提交代码的第一步就是要设置自己的 ...
- GitHub 系列之「Git速成」
1.什么是Git? Git 是 Linux 发明者 Linus 开发的一款新时代的版本控制系统,那什么是版本控制系统呢?怎么理解?网上一大堆详细的介绍,但是大多枯燥乏味,对于新手也很难理解,这里我只举 ...
- Java Script 读书笔记 (四) 面向对象编程
1. 对象,属性 前面看到对象里删除属性一直疑惑,什么是对象,为什么属性可以删除, 我印象里的属性还是停留在property, 总想不明白为什么属性竟然能够删除.直到看到标准库才明白,原来对象就是py ...
- Dubbo中暴露服务的过程解析
dubbo暴露服务有两种情况,一种是设置了延迟暴露(比如delay="5000"),另外一种是没有设置延迟暴露或者延迟设置为-1(delay="-1"): 设置 ...
- bzoj 3343 教主的魔法 分块
修改直接对整块打标记,两边暴力. 查询需要保证每个整块有序,所以在修改时排序就好啦 #include<cstdio> #include<cstring> #include< ...
- react VS vue 我们究竟该如何选择(从项目的角度帮你分析)
一.序言 现在web开发最火的两个框架,react和vue.听起来就感觉很牛逼的样子.确实,不得不服,创造出这2种框架的人真的是牛逼.不过更牛逼的是为这2中框架不断完善的人.一个优秀的idea,会在很 ...
- monkey----测试中的要求
测试中的要求: (1)导出的log命名以测试机的imei号为主或者是以测试机的编号为主,这样方便找到测试机,避免出现问题后无法找到机器,难以定位问题. 导出的log文件后缀名以.log命名, ...
- python的知识统计笔记
python的发展
- 将wiki人脸数据集的性别信息提取出来制作标签
import scipy.io as scio dataFile = 'D:\\Users\\a\\Documents\\Tencent Files\\178026882\\FileRecv\\wik ...
- python接口自动化(二十六)--批量执行用例 discover(详解)
简介 我们在写用例的时候,单个脚本的用例好执行,那么多个脚本的时候,如何批量执行呢?这时候就需要用到 unittest 里面的 discover 方法来加载用例了.加载用例后,用 unittest 里 ...