X 国的地图可以被看作一个两行 nn 列的网格状图。现在 X 国需要修建铁路,然而该国的国王非常小气,他只想保证位于某两列之间的所有城市互相可以到达就行了,在此基础上,他希望所花费的代价最小。

铁路可以建在任何两个相邻的点之间,使他们可以互相到达。可以作为工作人员,你已经整理出了为每一对相邻城市架设铁路所需要的花费。你需要准备好回答国王如下形式的问题。

对于 (i,j)(i,j):当前情况下,使第 ii 列到第 jj 列之间的所有城市连通的最小代价是多少(列下标从 11 开始)?注意不能用其他列的城市。

然而你还有更大的困难,随着时间变化,使用某些边作为铁路的代价会发生改变,你必须有效率地处理这些变化。

输入格式

第一行两个正整数 n,m,表示该国有 2 行 n 列以及 m个询问或者操作。

第二行 3n-2个数,前 n-1个数依次表示在第一行的 n-1 条边上修建铁路的代价。

接下来 n-1 个数,依次表示在第二行的 n-1 条边上修建铁路的代价。

最后 n 个数,依次表示在第 1列到第 n列的边上修建铁路的代价。

接下来 m 行的输入具有如下形式,K,S,T其中

若 K=1,则表示询问当前状态下,使所有第 S 列到第 T 列之间的城市连通需要的最小代价。

若 K=2,则表示位于第 1 行第 S 列的点到第 1 行第 S+1 列的点之间的边上修建铁路的代价变为 T。

若 K=3,则表示位于第 2 行第 S 列的点和第 2 行第 S+1 列的点之间的边上修建铁路的代价变为 T。

若 K=4,则表示第 S 列的边上修建铁路的代价变为 T。

输出格式

依次对每个询问,用一行输出相应的答案。

数据范围与约定

对于 30% 的数据:n,m≤2000。

另有 30% 的数据:所有竖边的代价为 0 且永不改变。

对于全部数据:n,m<10^5

所有输入和输出数据保证合法,且不超过 2^{31}-1

样例输入

4 14
2 3 4 3 1 1 1 5 4 7
1 1 2
1 2 3
1 1 3
1 2 4
2 1 5
1 1 4
4 2 1
1 1 3
1 2 3
1 2 4
3 3 100
1 3 4
1 2 4
1 1 4
样例输出

6
8
10
13
17
9
5
10
15
16
20

暴力显然可以每一次查询做一次最小生成树

一开始贪心,每一列选两个最小的边,用线段树维护,然后选一个最小的未选边

但这样显然不能保证图连通和最优

我们要想办法用数据结构来优化查询和修改,这里用线段树

w[rt][0/1][0/1]表示rt区间左,右是否有竖边的最小值

这样就可以通过左右区间合并来维护和查询

注意当区间只有一个元素时

w[rt][0][1]=a[l]+b[l]+c[l+1]

每一个节点都要算上下一个点的竖边,合并时要减去重复的竖边

详情见代码,这样是可以保证图连通的

s=t时要特判

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long lol;
struct XXX
{
lol a[][];
};
lol w[][][],a[],b[],c[];
int n,m;
void pushup(int rt,int mid)
{int i,j;
for (i=;i<=;i++)
for (j=;j<=;j++)
{
w[rt][i][j]=1e9;
lol cost=w[rt*][i][]+w[rt*+][][j]-c[mid+];
w[rt][i][j]=min(w[rt][i][j],cost);
cost=w[rt*][i][]+w[rt*+][][j]-c[mid+];
w[rt][i][j]=min(w[rt][i][j],cost);
cost=w[rt*][i][]+w[rt*+][][j]-c[mid+];
w[rt][i][j]=min(w[rt][i][j],cost);
}
}
void build(int rt,int l,int r)
{
if (l>r) return;
if (l==r)
{
lol tot=a[l]+b[l]+c[l]+c[l+];
w[rt][][]=tot-c[l+];
w[rt][][]=tot-(a[l]+b[l]+abs(b[l]-a[l]))/;
w[rt][][]=1e9;
w[rt][][]=tot-c[l];
return;
}
int mid=(l+r)/;
build(rt*,l,mid);
build(rt*+,mid+,r);
pushup(rt,mid);
}
void ask(int rt,int l,int r,int L,int R,XXX &p)
{int i,j;
if (l>r) return;
if (l>=L&&r<=R)
{
for (i=;i<=;i++)
for (j=;j<=;j++)
p.a[i][j]=w[rt][i][j];
return;
}
XXX p1,p2;
if (l==r) return;
int mid=(l+r)/;
if (L>=mid+)
{
ask(rt*+,mid+,r,L,R,p2);
for (i=;i<=;i++)
for (j=;j<=;j++)
p.a[i][j]=p2.a[i][j];
return;
}
if (R<=mid)
{
ask(rt*,l,mid,L,R,p1);
for (i=;i<=;i++)
for (j=;j<=;j++)
p.a[i][j]=p1.a[i][j];
return;
}
ask(rt*,l,mid,L,R,p1);
ask(rt*+,mid+,r,L,R,p2);
for (i=;i<=;i++)
for (j=;j<=;j++)
{
p.a[i][j]=1e9;
lol cost=p1.a[i][]+p2.a[][j]-c[mid+];
p.a[i][j]=min(p.a[i][j],cost);
cost=p1.a[i][]+p2.a[][j]-c[mid+];
p.a[i][j]=min(p.a[i][j],cost);
cost=p1.a[i][]+p2.a[][j]-c[mid+];
p.a[i][j]=min(p.a[i][j],cost);
}
}
void update(int rt,int l,int r,lol k,lol x,lol d)
{
if (l>r) return;
if (l==r)
{
if (k==) a[x]=d;
if (k==) b[x]=d;
if (k==) c[x]=d;
lol tot=a[l]+b[l]+c[l]+c[l+];
w[rt][][]=tot-c[l+];
w[rt][][]=tot-(a[l]+b[l]+abs(b[l]-a[l]))/;
w[rt][][]=1e9;
w[rt][][]=tot-c[l];
return;
}
int mid=(l+r)/;
if (k==)
{
if (x<=mid+) update(rt*,l,mid,k,x,d);
if (x>=mid+) update(rt*+,mid+,r,k,x,d);
}
else
{
if (x<=mid) update(rt*,l,mid,k,x,d);
else update(rt*+,mid+,r,k,x,d);
}
pushup(rt,mid);
}
int main()
{int i;
lol k,s,t;
XXX p;
cin>>n>>m;
for (i=;i<=n-;i++)
scanf("%lld",&a[i]);
for (i=;i<=n-;i++)
scanf("%lld",&b[i]);
for (i=;i<=n;i++)
scanf("%lld",&c[i]);
build(,,n-);
while (m--)
{lol ans=2e9;
scanf("%lld%lld%lld",&k,&s,&t);
if (k==)
{
if (s==t)
{printf("%lld\n",c[s]);continue;}
ask(,,n-,s,t-,p);
ans=min(min(p.a[][],p.a[][]),min(p.a[][],p.a[][]));
printf("%lld\n",ans);
}
else
{
update(,,n-,k,s,t);
}
}
}
 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long lol;
struct XXX
{
lol a[][];
};
lol w[][][],a[],b[],c[];
int n,m;
void pushup(int rt,int mid)
{int i,j;
for (i=;i<=;i++)
for (j=;j<=;j++)
{
w[rt][i][j]=1e9;
lol cost=w[rt*][i][]+w[rt*+][][j]-c[mid+];
w[rt][i][j]=min(w[rt][i][j],cost);
cost=w[rt*][i][]+w[rt*+][][j]-c[mid+];
w[rt][i][j]=min(w[rt][i][j],cost);
cost=w[rt*][i][]+w[rt*+][][j]-c[mid+];
w[rt][i][j]=min(w[rt][i][j],cost);
}
}
void build(int rt,int l,int r)
{
if (l>r) return;
if (l==r)
{
lol tot=a[l]+b[l]+c[l]+c[l+];
w[rt][][]=tot-c[l+];
w[rt][][]=tot-(a[l]+b[l]+abs(b[l]-a[l]))/;
w[rt][][]=1e9;
w[rt][][]=tot-c[l];
return;
}
int mid=(l+r)/;
build(rt*,l,mid);
build(rt*+,mid+,r);
pushup(rt,mid);
}
void ask(int rt,int l,int r,int L,int R,XXX &p)
{int i,j;
if (l>r) return;
if (l>=L&&r<=R)
{
for (i=;i<=;i++)
for (j=;j<=;j++)
p.a[i][j]=w[rt][i][j];
return;
}
XXX p1,p2;
if (l==r) return;
int mid=(l+r)/;
if (L>=mid+)
{
ask(rt*+,mid+,r,L,R,p2);
for (i=;i<=;i++)
for (j=;j<=;j++)
p.a[i][j]=p2.a[i][j];
return;
}
if (R<=mid)
{
ask(rt*,l,mid,L,R,p1);
for (i=;i<=;i++)
for (j=;j<=;j++)
p.a[i][j]=p1.a[i][j];
return;
}
ask(rt*,l,mid,L,R,p1);
ask(rt*+,mid+,r,L,R,p2);
for (i=;i<=;i++)
for (j=;j<=;j++)
{
p.a[i][j]=1e9;
lol cost=p1.a[i][]+p2.a[][j]-c[mid+];
p.a[i][j]=min(p.a[i][j],cost);
cost=p1.a[i][]+p2.a[][j]-c[mid+];
p.a[i][j]=min(p.a[i][j],cost);
cost=p1.a[i][]+p2.a[][j]-c[mid+];
p.a[i][j]=min(p.a[i][j],cost);
}
}
void update(int rt,int l,int r,lol k,lol x,lol d)
{
if (l>r) return;
if (l==r)
{
if (k==) a[x]=d;
if (k==) b[x]=d;
if (k==) c[x]=d;
lol tot=a[l]+b[l]+c[l]+c[l+];
w[rt][][]=tot-c[l+];
w[rt][][]=tot-(a[l]+b[l]+abs(b[l]-a[l]))/;
w[rt][][]=1e9;
w[rt][][]=tot-c[l];
return;
}
int mid=(l+r)/;
if (k==)
{
if (x<=mid+) update(rt*,l,mid,k,x,d);
if (x>=mid+) update(rt*+,mid+,r,k,x,d);
}
else
{
if (x<=mid) update(rt*,l,mid,k,x,d);
else update(rt*+,mid+,r,k,x,d);
}
pushup(rt,mid);
}
int main()
{int i;
lol k,s,t;
XXX p;
cin>>n>>m;
for (i=;i<=n-;i++)
scanf("%lld",&a[i]);
for (i=;i<=n-;i++)
scanf("%lld",&b[i]);
for (i=;i<=n;i++)
scanf("%lld",&c[i]);
build(,,n-);
while (m--)
{lol ans=2e9;
scanf("%lld%lld%lld",&k,&s,&t);
if (k==)
{
if (s==t)
{printf("%lld\n",c[s]);continue;}
ask(,,n-,s,t-,p);
ans=min(min(p.a[][],p.a[][]),min(p.a[][],p.a[][]));
printf("%lld\n",ans);
}
else
{
update(,,n-,k,s,t);
}
}
}

计蒜客NOIP模拟赛(3)D1T3 任性的国王的更多相关文章

  1. 计蒜客NOIP模拟赛4 D1T3 小X的佛光

    小 X 是远近闻名的学佛,平日里最喜欢做的事就是蒸发学水. 小 X 所在的城市 X 城是一个含有 N 个节点的无向图,同时,由于 X 国是一个发展中国家,为了节约城市建设的经费,X 国首相在建造 X ...

  2. 计蒜客NOIP模拟赛(2)D1T3 深黑幻想

    [问题描述]    凡终于发愤图强,决定专心搞OI,不再玩纸牌和坑钱了!没过多久就飘飘然了,总是陷入自己进了集训队的深黑幻想之中.    样听说了之后,决定考一考凡欧拉回路怎么写.样:“我给你出一道题 ...

  3. 计蒜客NOIP模拟赛6 D1T1Diamond-square

    Diamond-square 算法是一种能够用于生成噪声的算法,现在我们考虑这个算法的一个变种. 你有一个 2^n\times 2^n2​n​​×2​n​​ 的网格,一共有 (2^n+1)^2(2​n ...

  4. 计蒜客NOIP模拟赛4 D2T1 鬼脚图

    鬼脚图,又称画鬼脚,在日本称作阿弥陀签,是一种经典游戏,也是一种简易的决策方法,常常用来抽签或决定分配组合. 下图就是一张鬼脚图,其包含若干条竖线和若干条横线.请注意,横线只能水平连接相邻的两条竖线, ...

  5. 计蒜客 NOIP模拟赛(3) D1T1火山喷发

    火山喷发对所有附近的生物具有毁灭性的影响.在本题中,我们希望用数值来模拟这一过程. 在环境里有 nnn 个生物分别具有 A1,A2,⋯,An​​点生命值,一次火山喷发总计 M轮,每轮造成 1点伤害,等 ...

  6. 计蒜客NOIP模拟赛(2) D1T1邻家男孩

    凡是一个具有领导力的孩子.现实生活中他特别喜欢玩一个叫做 UNO 的纸牌游戏,他也总是带着其他小朋友一起玩,然后战胜他们.慢慢地,他厌倦了胜利,于是准备发明一种新的双人纸牌游戏. 初始时,每个人手中都 ...

  7. 计蒜客NOIP模拟赛5 D1T1 机智的 AmyZhi

    那年一个雨季,AmyZhi 在校门外弯身买参考书. 这时 SiriusRen 走过来,一言不合甩给她一道“自认为”很难的题: --------------- 给你一个数字 NN(NN 的范围是 11  ...

  8. 计蒜客NOIP模拟赛4 D2T2 跑步爱天天

    YOUSIKI 在 noip2016 的一道<天天爱跑步>的题爆零后,潜心研究树上问题,成为了一代大师,于是皮皮妖为了测验他,出了一道题,名曰<跑步爱天天>. 有一个以 1 为 ...

  9. 计蒜客NOIP模拟赛4 D1T2小X的密室

    小 X 正困在一个密室里,他希望尽快逃出密室. 密室中有 N 个房间,初始时,小 X 在 1 号房间,而出口在 N 号房间. 密室的每一个房间中可能有着一些钥匙和一些传送门,一个传送门会单向地创造一条 ...

随机推荐

  1. beta冲刺1-咸鱼

    前言:这篇算是开始补之前的开端,毕竟beta阶段我们从前面开始就有在陆续做了. 今天的工作: 接收了新成员*1,然后几个人聚了一下,并且讨论了一下目前遇到的问题,以及目前需要处理的问题. 目前遇到的问 ...

  2. Software Engineering-HW2

    title: Software Engineering-HW2 date: 2017-09-21 10:35:47 tags: HW --- 题目描述 从<构建之法>第一章的 " ...

  3. Archlinux无线联网教程

    本人是学生党,故对于有线方式不甚了解,学校里一般使用mentohust用动态IP方式联网,或者直接连接wifi,这里介绍无线联网的一些方式,主要包括公共wifi和带有WEP或者WPA或者WPA2PSK ...

  4. linux 下 nc 命令的使用

    netcat被誉为网络安全界的'瑞士军刀',一个简单而有用的工具,透过使用TCP或UDP协议的网络连接去读写数据.它被设计成一个稳定的后门工具,能够直接由其它程序和脚本轻松驱动.同时,它也是一个功能强 ...

  5. vue 在methods中调用mounted中的方法?

    首先可以在data中先声明一个变量 比如 isShow=' ' mounted 中 ---> methods 中 --->  this.sureDelBox(item) 直接this调用 ...

  6. Python-模块使用-Day6

    Python 之路 Day6 - 常用模块学习 本节大纲: 模块介绍time &datetime模块randomossysshutiljson & picleshelvexml处理ya ...

  7. OpenShift实战(三):OpenShift持久化存储Redis

    1.模板定义 修改OpenShift自带模板 [root@master1 pv]# oc edit template redis-persistent 添加如下: 2.创建PV 编辑redis pv ...

  8. 阿里云API网关(11)API的三种安全认证方式

    网关指南: https://help.aliyun.com/document_detail/29487.html?spm=5176.doc48835.6.550.23Oqbl 网关控制台: https ...

  9. matlab等高线绘制

    参考代码: figure;// Figure建立新的图形 z=double(z); x=1:length(z); y=x; [X2,Y2]=meshgrid(x,y); subplot(121); [ ...

  10. bootstrap 一个简单的登陆页面

    效果如图:用bootstrap 写的一个简单的登陆 一.修改样式 样式可以自己调整,例如换个背景色之类的,修改 background-color属性就可以 #from { background-col ...