Description

一共n × m 个硬币,摆成n × m 的长方形。dongdong 和xixi 玩一个游戏, 每次可以选择一个连通块,并把其中的硬币全部翻转,但是需要满足存在一个 硬币属于这个连通块并且所有其他硬币都在它的左上方(可以正左方也可以正 上方),并且这个硬币是从反面向上翻成正面向上。dongdong 和xixi 轮流操作。 如果某一方无法操作,那么他(她) 就输了。dongdong 先进行第一步操作,假 设双方都采用最优策略。问dongdong 是否有必胜策略。

Input

第一行一个数T,表示他们一共玩T 局游戏。接下来是T 组游戏描述。每 组游戏第一行两个数n;m,接下来n 行每行m 个字符,第i 行第j 个字符如 果是“H” 表示第i 行第j 列的硬币是正面向上,否则是反面向上。第i 行j 列 的左上方是指行不超过i 并且列不超过j 的区域。

Output

对于每局游戏,输出一行。如果dongdong 存在必胜策略则输出“- -”(不含 引号) 否则输出“= =”(不含引号)。(注意输出的都是半角符号,即三个符号 ASCII 码分别为45,61,95)

Sample Input

32
3
HHH
HHH
2 3
HHH
TTH
2 1
T
H

Sample Output

= =
- -
- -

HINT

对于40% 的数据,满足1 ≤ n;m ≤ 5。
对于100% 的数据,满足1 ≤ n;m ≤ 100,1 ≤ T ≤ 50。

先考虑一维

SG[i]为单独考虑只有i是反面,其他都是正面的SG值,这样原情况可以转化为很多子游戏

假设要求SG[3]

也就是001

有这么几种:000  010  110

SG[3]=mex{0,2,2^1}=1

SG(4) = mex{0, 1, 1 XOR 2, 1 XOR 2 XOR 1} = 4;

SG(5) = mex(0, 4, 4 XOR 1, 4 XOR 1 XOR 2, 4 XOR 1 XOR 2 XOR 1) = 1;

枚举了很多SG发现SG[n]=lowbit(n)

将类似的方法拓展到2维:

要求SG[2][2],也就是

归纳得出,在i,j都大于1时,SG[i][j]=2i+j-2

在i或j为0时,为一维的算法

优于2200过大,所以用二进制存储

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
struct Num
{
int a[];
}SG[][],ans;
int n,m,flag;
char s[];
Num operator ^(const Num &A,const Num &B)
{int i;
Num C;
memset(C.a,,sizeof(C.a));
for (i=;i<=;i++)
if (A.a[i]!=B.a[i]) C.a[i]=;
return C;
}
int lowbit(int x)
{
return x&(-x);
}
void getSG()
{int i,j;
SG[][].a[]=;
for (i=;i<=;i++)
{
int x=lowbit(i);
for (j=;j<=;j++)
if ((<<j)==x)
SG[][i].a[j]=SG[i][].a[j]=;
}
for (i=;i<=;i++)
{
for (j=;j<=;j++)
{
SG[i][j].a[i+j-]=;
}
}
}
int main()
{int T,i,j;
cin>>T;
getSG();
while (T--)
{
cin>>n>>m;
memset(ans.a,,sizeof(ans.a));
for (i=;i<=n;i++)
{
scanf("%s",s+);
for (j=;j<=m;j++)
{
if (s[j]=='T') ans=ans^SG[i][j];
}
}
flag=;
for (i=;i<=;i++)
if (ans.a[i])
{flag=;break;}
if (flag) printf("-_-\n");
else printf("=_=\n");
}
}

[ZJOI2009]染色游戏的更多相关文章

  1. 【BZOJ1434】[ZJOI2009]染色游戏(博弈论)

    [BZOJ1434][ZJOI2009]染色游戏(博弈论) 题面 BZOJ 洛谷 题解 翻硬币的游戏我似乎原来在博客里面提到过,对于这类问题,当前局面的\(SG\)函数就是所有反面朝上的硬币单一存在时 ...

  2. BZOJ1434:[ZJOI2009]染色游戏(博弈论)

    Description 一共n×m个硬币,摆成n×m的长方形.dongdong和xixi玩一个游戏,每次可以选择一个连通块,并把其中的硬币全部翻转,但是需要满足存在一个硬币属于这个连通块并且所有其他硬 ...

  3. bzoj1434 [ZJOI2009]染色游戏

    Description 一共n × m 个硬币,摆成n × m 的长方形.dongdong 和xixi 玩一个游戏, 每次可以选择一个连通块,并把其中的硬币全部翻转,但是需要满足存在一个 硬币属于这个 ...

  4. BZOJ 1434: [ZJOI2009]染色游戏

    一开始想这不$SG$裸题...然后发现100组数据...然后发现连通块是任意的求$SG$貌似要暴力枚举.... 然后想了一下1维,手动打表,每次就是队当前所有异或后缀和求$mex$,好像就是$lowb ...

  5. [luogu2594 ZJOI2009]染色游戏(博弈论)

    传送门 Solution 对于硬币问题,结论是:当前局面的SG值等于所有背面朝上的单个硬币SG值的异或和 对于求单个背面朝上的硬币SG值...打表找规律吧 Code //By Menteur_Hxy ...

  6. luogu2594 [ZJOI2009]染色游戏

    做法其他题解已经说得很清楚了,但似乎没有对于本题 SG 函数正确性的证明,我来口胡一下( 证明: 猜想: \[\operatorname{SG}(i,j)=\begin{cases}\operator ...

  7. BZOJ 1411&&Vijos 1544 : [ZJOI2009]硬币游戏【递推,快速幂】

    1411: [ZJOI2009]硬币游戏 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 897  Solved: 394[Submit][Status ...

  8. bzoj1411: [ZJOI2009]硬币游戏

    1411: [ZJOI2009]硬币游戏 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 965  Solved: 420[Submit][Status ...

  9. 题解 [SDOI2009]E&D/染色游戏/Moving Pebbles

    E&D 染色游戏 Moving Pebbles E&D 题目大意 给出 \(2n\) 堆石子,\(2i-1\) 和 \(2i\) 为一组.每次可以选择一组删掉其中一堆,然后从同一组另外 ...

随机推荐

  1. 记录python接口自动化测试--主函数(第六目)

    把操作excel的方法封装好后,就可以用准备好的接口用例来循环遍历了 我的接口测试用例如下 主函数代码: run_handle_excel.py# coding:utf-8 from base.run ...

  2. 团队作业8——测试与发布(Beta阶段)

    Deadline: 2017-12-17 23:00PM,以博客发表日期为准.   评分基准: 按时交 - 有分,检查的项目包括后文的三个方面 测试报告 发布说明 展示博客(单独一篇博客) 晚交 - ...

  3. Beta冲刺 第二天

    Beta冲刺 第二天 1. 昨天的困难 由于前面的冲刺留下的问题很多,而且混乱的代码给我们接下来的完善工作带来了巨大的困难. 2. 今天解决的进度 潘伟靖: 1.对代码进行了review 2.为系统增 ...

  4. PTA博客制作的模版

    C高级第 次PTA作业( ) 题目 - 此处填写题目名称 1.设计思路 (1)算法 (2)流程图 2.实验代码 此处填写代码 3.本题调试过程碰到问题及解决办法 错误信息: 错误原因: 改正方法: 提 ...

  5. 利用python实现简单邮件功能

    #!/usr/bin/env python # -*- coding:utf-8 -*- import smtplib from email.utils import formataddr from ...

  6. js:防抖动与节流

    http://blog.csdn.net/crystal6918/article/details/62236730

  7. nyoj 数的长度

    描述 N!阶乘是一个非常大的数,大家都知道计算公式是N!=N*(N-1)······*2*1.现在你的任务是计算出N!的位数有多少(十进制)?   输入 首行输入n,表示有多少组测试数据(n<1 ...

  8. tomcat-theory

    (一) java类:applet,servlet,jsp JSP:.jsp-->.java-->(JVM).classJDK:javac,.java-->.classweb:Serv ...

  9. python xml.dom模块解析xml

    1. 什么是xml?有何特征? xml即可扩展标记语言,它可以用来标记数据.定义数据类型,是一种允许用户对自己的标记语言进行定义的源语言. 例子:del.xml <?xml version=&q ...

  10. tornada模板学习笔记

    import tornado.web import tornado.httpserver import tornado.ioloop import tornado.options import os. ...