【2016北京集训测试赛(十)】 Azelso (期望DP)
Time Limit: 1000 ms Memory Limit: 256 MB
Description
题解
状态表示:
这题的状态表示有点难想......
设$f_i$表示第$i$个事件经过之后,到达终点之前,不再回到事件$i$或事件$i$的左边的概率,反过来说就是可以在右边乱绕,若事件$i$的位置为pos,“右边”指的就是$(pos,h]$。
我们将第$i$个事件到第$i+1$个事件中间这一段路程记为$S_i$,那么期望经过$S_i$的次数就为$1/f_i$。
为什么是$1/f_i$呢?具体来说,只在右边乱绕,最左也只能到达$i+1$;一旦跨越到i或i的左边位置,那么S就必须要被经过了。所以$f_i$越小,被踢到左边或起点的概率就越大,经过$S_i$的概率和期望也就越大。
Orzhy Orzyww Orzyxq
状态转移:
我们来反向转移嘿。
考虑$f_i$,我们应该从$f_i+1$得到。
我们令$p_i$为第$i$个事件的成功概率(获得Flag或打败敌人的概率)。
- 如果$i+1$个事件是一个敌人,那么
$f_i=f_{i+1}*p_{i+1}$
- 如果$i+1$个事件是一面FLAG,那么
$f_i=f_{i+1}+(1-f_{i+1})*p_{i+1}*f_{i+1}+((1-f_{i+1})*p_{i+1})^2*f_{i+1}+...+((1-f_{i+1})*p_{i+1})^k*f_{i+1}$
$=f_{i+1}*(1+p_{i+1}*(1-f_{i+1})+p_{i+1}^2*(1-f_{i+1})^2+...+p_{i+1}^k*(1-f_{i+1})^k)$
${k\to\infty}$
可以运用极限等式的求法可以将极限部分转换为下式的分母:
$f_i=\frac{f_{i+1}}{(1-p_{i+1}*(1-f_{i+1}))}$
这是什么意思呢?
看回第一个式子,$(1-f_{i+1})$的意思是被弹回i+1或i+1的左边,$p_{i+1}$的意思是被$i+1$这个旗子留住,$f_{i+1}$的意思是从$i+1$一路走到终点的概率。
$(1-f_{i+1})*p_{i+1}*f_{i+1}$意思是按下图的1-2-3顺序执行
同理,$((1-f_{i+1})*p_{i+1})^2*f_{i+1}$表示1-2-1-2-3,$((1-f_{i+1})*p_{i+1})^3*f_{i+1}$表示1-2-1-2-1-2-3,以此类推即可。
计算时所有除法转为逆元,记得%多一点(记8.17)
【2016北京集训测试赛(十)】 Azelso (期望DP)的更多相关文章
- [2016北京集训测试赛5]azelso-[概率/期望dp]
Description Solution 感谢大佬的博客https://www.cnblogs.com/ywwyww/p/8511141.html 定义dp[i]为[p[i],p[i+1])的期望经过 ...
- 【2016北京集训测试赛】azelso
[吐槽] 首先当然是要orzyww啦 以及orzyxq奇妙顺推很强qwq 嗯..怎么说呢虽然说之前零零散散做了一些概d的题目但是总感觉好像并没有弄得比较明白啊..(我的妈果然蒟蒻) 这题的话可以说是难 ...
- 2016北京集训测试赛(十)Problem A: azelso
Solution 我们把遇到一个旗子或者是遇到一个敌人称为一个事件. 这一题思路的巧妙之处在于我们要用\(f[i]\)表示从\(i\)这个事件一直走到终点这段路程中, \(i\)到\(i + 1\)这 ...
- 【2016北京集训测试赛(十六)】 River (最大流)
Description Special Judge Hint 注意是全程不能经过两个相同的景点,并且一天的开始和结束不能用同样的交通方式. 题解 题目大意:给定两组点,每组有$n$个点,有若干条跨组 ...
- 2016北京集训测试赛(十六)Problem C: ball
Solution 这是一道好题. 考虑球体的体积是怎么计算的: 我们令\(f_k(r)\)表示\(x\)维单位球的体积, 则 \[ f_k(1) = \int_{-1}^1 f_{k - 1}(\sq ...
- 2016北京集训测试赛(十六)Problem B: river
Solution 这题实际上并不是构造题, 而是一道网络流. 我们考虑题目要求的一条路径应该是什么样子的: 它是一个环, 并且满足每个点有且仅有一条出边, 一条入边, 同时这两条边的权值还必须不一样. ...
- 2016北京集训测试赛(十六)Problem A: 任务安排
Solution 这道题告诉我们, 不能看着数据范围来推测正解的时间复杂度. 事实证明, 只要常数足够小, \(5 \times 10^6\)也是可以跑\(O(n \log n)\)算法的!!! 这道 ...
- 2016北京集训测试赛(十四)Problem B: 股神小D
Solution 正解是一个\(\log\)的link-cut tree. 将一条边拆成两个事件, 按照事件排序, link-cut tree维护联通块大小即可. link-cut tree维护子树大 ...
- 2016北京集训测试赛(十四)Problem A: 股神小L
Solution 考虑怎么卖最赚钱: 肯定是只卖不买啊(笑) 虽然说上面的想法很扯淡, 但它确实能给我们提供一种思路, 我们能不买就不买; 要买的时候就买最便宜的. 我们用一个优先队列来维护股票的价格 ...
随机推荐
- POJ 3984 路径输出
迷宫问题 Description 定义一个二维数组: int maze[5][5] = { 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, ...
- 全网首创ISE入门级教程
转眼间我已经大三了,现在成为了实验室的负责人,对于下一届学生的纳新重任就交到了我的手上,想采取不同的方法暑假尽可能对他们进行一些培训,所以制作了此教程,说实话,在网上还没有找到关于ISE的入门级使用教 ...
- 深入 HTML5 Web Worker 应用实践:多线程编程
深入 HTML5 Web Worker 应用实践:多线程编程 HTML5 中工作线程(Web Worker)简介 至 2008 年 W3C 制定出第一个 HTML5 草案开始,HTML5 承载了越来越 ...
- 【3D计算机图形学】变换矩阵、欧拉角、四元数
[3D计算机图形学]变换矩阵.欧拉角.四元数 旋转矩阵.欧拉角.四元数主要用于:向量的旋转.坐标系之间的转换.角位移计算.方位的平滑插值计算. 一.变换矩阵: 首先要区分旋转矩阵和变换矩阵: 旋转 ...
- anaconda 下多版本Python 安装说明
网上针对多版本的Python兼容安装的文章逐渐增多,都是大家在实践中总结的经验.本人的安装经过几次的反复实验还是觉得其中一种更为方便. 有人的安装方法是: 1. 先安装一个版本的python(一般先安 ...
- sqlserver的触发器练习实例
触发器的概念:它是由事件驱动的,就像java中的监听,当某个事件发生了,就会做一些工作. 下面直接上干货,创建insert触发器.delete触发器.DDL触发器和如何查看触发器定义 1.创建三个表学 ...
- Linux,activemq-cpp之消息过滤器
假设过滤器字符串如下: filt1=aaaa filt2=bbbb filt3=cccc activeMQ-cpp中消息过滤器,在发送消息的producer.cpp中,对message进行属性设置,m ...
- (转)HTTP 协议详解(基础)
HTTP 协议详解 作者: 小坦克 来源: 博客园 发布时间: 2012-02-14 13:32 阅读: 95523 次 推荐: 99 原文链接 [收藏] 相关文章:HTTP 协议 ...
- C语言基础 - 输出1-100万之间的素数
其实这个很简单 代码 网上也一大堆... //判断素数 BOOL isPrime(int num) { for (int i = 2; i <= sqrt(num); i++) { //能整除则 ...
- 【python】字符排序
一.摘要 最近在做一个排序的东西,被python的字符串编码格式折腾了一会儿,总结下 二.排序 英文排序不用说,sort sorted 比较好,内部已经实现 主要是中文,方法是查表获取拼音再进行排序. ...