Floyd判圈算法
Floyd判圈算法
leetcode 上 编号为202 的happy number 问题,有点意思。happy number 的定义为:
A happy number is a number defined by the following process: Starting with any positive integer, replace the number by the sum of the squares of its digits, and repeat the process until the number equals 1 (where it will stay), or it loops endlessly in a cycle which does not include 1. Those numbers for which this process ends in 1 are happy numbers.
如 19 就是一个 happy number :
1^2 + 9^2 = 82
8^2 + 2^2 = 68
6^2 + 8^2 = 100
1^2 + 0^2 + 0^2 = 1
12就不是一个happy number :
1^2 + 2^2 =5
5^2 = 25
2^2 + 5^2 = 29
2^2 + 9^2 = 85
8^2 + 5^2 = 89 <----
8^2 + 9^2 = 145
1^2 + 4^2+ 5^2 = 42
4^2 + 2^2 = 20
2^2 + 0^2 = 4
4^2 = 16
1^2 + 6^2 = 37
3^2 + 7^2 = 58
5^2 + 8^2 = 89 <----
... ...
可以发现如果一个数是一个 happy number,那么最终是1循环,比较容易判断。如果一个数不是 happy number,那么存在一个循环,其中不包含1,这就比较难判断,因为不清楚这个循环周期大小。一种解决思路是通过 HashSet 来存取数字,如果这个数字之前存储好了,说明进入一个循环。代码如下:
public class Solution {
public boolean isHappy(int n) {
HashSet<Integer> set = new HashSet<Integer>();
while(!set.contains(n)) {
set.add(n);
n = getSquSum(n);
if(n == 1) {
return true;
}
}
return false;
}
public int getSquSum(int n) {
int sum = 0;
int t;
while(n != 0){
t = n % 10;
sum += t * t;
n = n / 10;
}
return sum;
}
}
有种比较巧妙的思路是:Floyd判圈算法。wikipedia 上的说明是:
Floyd判圈算法(Floyd Cycle Detection Algorithm),又称龟兔赛跑算法(Tortoise and Hare Algorithm)。该算法由美国科学家罗伯特·弗洛伊德发明,是一个可以在有限状态机、迭代函数或者链表上判断是否存在环,求出该环的起点与长度的算法。
初始状态下,假设已知某个起点节点为节点S。现设两个指针t和h,将它们均指向S。接着,同时让t和h往前推进,但是二者的速度不同:t每前进1步,h前进2步。只要二者都可以前进而且没有相遇,就如此保持二者的推进。当h无法前进,即到达某个没有后继的节点时,就可以确定从S出发不会遇到环。反之当t与h再次相遇时,就可以确定从S出发一定会进入某个环。
class Solution {
public:
bool isHappy(int n) {
int slow = n;
int fast = sqrtSum(n);
while(fast != 1 && slow != fast) {
fast = sqrtSum(fast);
if(fast != 1 && slow != fast) {
fast = sqrtSum(fast);
slow = sqrtSum(slow);
}
}
return fast == 1;
}
int sqrtSum(int n) {
int sum = 0;
while(n) {
sum += (n % 10) * (n % 10);
n = n / 10;
}
return sum;
}
}
Floyd判圈算法的更多相关文章
- SGU 455 Sequence analysis(Cycle detection,floyd判圈算法)
题目链接:http://acm.sgu.ru/problem.php?contest=0&problem=455 Due to the slow 'mod' and 'div' operati ...
- UVA 11549 CALCULATOR CONUNDRUM(Floyd判圈算法)
CALCULATOR CONUNDRUM Alice got a hold of an old calculator that can display n digits. She was bore ...
- UVA 11549 Calculator Conundrum (Floyd判圈算法)
题意:有个老式计算器,每次只能记住一个数字的前n位.现在输入一个整数k,然后反复平方,一直做下去,能得到的最大数是多少.例如,n=1,k=6,那么一次显示:6,3,9,1... 思路:这个题一定会出现 ...
- leetcode202(Floyd判圈算法(龟兔赛跑算法))
Write an algorithm to determine if a number is "happy". 写出一个算法确定一个数是不是快乐数. A happy number ...
- Codeforces Gym 101252D&&floyd判圈算法学习笔记
一句话题意:x0=1,xi+1=(Axi+xi%B)%C,如果x序列中存在最早的两个相同的元素,输出第二次出现的位置,若在2e7内无解则输出-1. 题解:都不到100天就AFO了才来学这floyd判圈 ...
- Floyd判圈算法 UVA 11549 - Calculator Conundrum
题意:给定一个数k,每次计算k的平方,然后截取最高的n位,然后不断重复这两个步骤,问这样可以得到的最大的数是多少? Floyd判圈算法:这个算法用在循环问题中,例如这个题目中,在不断重复中,一定有一个 ...
- Floyd 判圈算法
Floyd 判圈算法 摘自维基百科, LeetCode 上 141题 Linked List Cycle 用到这个, 觉得很有意思. 记录一下. 链接: https://zh.wikipedia.or ...
- UVa 11549 计算器谜题(Floyd判圈算法)
https://vjudge.net/problem/UVA-11549 题意: 有一个老式计算器,只能显示n位数字,输入一个整数k,然后反复平方,如果溢出的话,计算器会显示结果的最高n位.如果一直这 ...
- Floyd判圈算法 Floyd Cycle Detection Algorithm
2018-01-13 20:55:56 Floyd判圈算法(Floyd Cycle Detection Algorithm),又称龟兔赛跑算法(Tortoise and Hare Algorithm) ...
随机推荐
- 2017-2-17,c#基础,输入输出,定义变量,变量赋值,int.Parse的基础理解,在本的初学者也能看懂(未完待续)
计算机是死板的固定的,人是活跃的开放的,初学c#第一天给我的感觉就是:用人活跃开放式的思维去与呆萌的计算机沟通,摸清脾气,有利于双方深入合作,这也是今晚的教训,细心,仔细,大胆 c#基础 1.Hell ...
- CF Educational Codeforces Round 10 D. Nested Segments 离散化+树状数组
题目链接:http://codeforces.com/problemset/problem/652/D 大意:给若干个线段,保证线段端点不重合,问每个线段内部包含了多少个线段. 方法是对所有线段的端点 ...
- 【2017-04-21】Ado.Nte属性扩展
通过对数据库表的封装,对该表的属性进行扩展. 1.例如:表中的性别是bool类,要实现显示给用户看的为“男.女” 2.通过表中的生日datetime类,来实现显示给用户看的年月日,自动计算年龄. 3. ...
- 使用RandomAccessFile在两个java进程之间传递数据
大部分情况下,我们面对在两个java进程只见传递数据的问题时,第一个想到的就是开server,然后通过socket收发消息.这方面有大量的框架可用,就不细说了.但如果两个进程是在一台机器上,那么还可以 ...
- Vmware Vsphere WebService之vijava 开发一-vcenter连接、及集群信息获取
开始是通过java代码调用vsphere提供的原始接口,从而控制vcenter的操作.当第一个版本做完之后发现代码执行的速度特别慢,后来在网上看到有人用vijava(对vsphere原始接口封装)编程 ...
- 接口加密《二》: API权限设计总结
来源:http://meiyitianabc.blog.163.com/blog/static/105022127201310562811897/ API权限设计总结: 最近在做API的权限设计这一块 ...
- iOS关于Cookie验证登录状态
1.第一次进入应用,登录获取Cookie,此时如果用到的是AFN去获取接口数据,Cookie已经写入了,所以无需处理,每次请求的时候,会自动将该cookie传给后台去验证 2.将Cookie缓存到本地 ...
- oracle 12c 新特性之(相同字段上的多重索引、ddl 日志、限制PGA的大小、分页查询)
1. 相同字段上的多重索引 在Oracle 12c R1之前,一个字段是无法以任何形式拥有多个索引的.或许有人会想知道为什么通常一个字段需要有多重索引,事实上需要多重索引的字段或字段集合是很多的. ...
- ECMAScript6 规范
本文探讨如何将ES6的新语法,运用到编码实践之中,与传统的JavaScript语法结合在一起,写出合理的.易于阅读和维护的代码. 多家公司和组织已经公开了它们的风格规范,具体可参阅http://jsc ...
- 573. Squirrel Simulation
Problem statement: There's a tree, a squirrel, and several nuts. Positions are represented by the ce ...