在PyTorch中,autograd是所有神经网络的核心内容,为Tensor所有操作提供自动求导方法。

它是一个按运行方式定义的框架,这意味着backprop是由代码的运行方式定义的。

一、Variable

autograd.Variable 是autograd中最核心的类。 它包装了一个Tensor,并且几乎支持所有在其上定义的操作。一旦完成了你的运算,你可以调用 .backward()来自动计算出所有的梯度。

Variable有三个属性:data,grad以及creator。

访问原始的tensor使用属性.data;  关于这一Variable的梯度则集中于 .grad;  .creator反映了创建者,标识了是否由用户使用.Variable直接创建(None)。

还有一个对autograd的实现非常重要的类——Function。Variable 和Function数是相互关联的,并建立一个非循环图,从而编码完整的计算过程。每个变量都有一个.grad_fn属性引用创建变量的函数(除了用户创建的变量,它们的grad_fn是None)。

import torch
from torch.autograd import Variable

创建变量x:

x = Variable(torch.ones(2, 2), requires_grad=True)
print(x)

输出结果:

Variable containing:
1 1
1 1
[torch.FloatTensor of size 2x2]

在x基础上进行运算:

y = x + 2 
print(y)

输出结果:

Variable containing:
3 3
3 3
[torch.FloatTensor of size 2x2]

查看x的grad_fn:

print(x.grad_fn)

输出结果:

None

查看y的grad_fn:

print(y.grad_fn)

输出结果:

<torch.autograd.function.AddConstantBackward object at 0x7f603f6ab318>

可以看到y是作为运算的结果产生的,所以y有grad_fn,而x是直接创建的,所以x没有grad_fn。

在y基础上进行运算:

z = y * y * 3
out = z.mean()
print(z, out)

输出结果:

Variable containing:
27 27
27 27
[torch.FloatTensor of size 2x2]
Variable containing:
27
[torch.FloatTensor of size 1]

二、Gradients

如果Variable是一个标量(例如它包含一个单元素数据),你无需对backward()指定任何参数.

out.backward()等价于out.backward(torch.Tensor([1.0])).

out.backward()
print(x.grad)

输出结果:

Variable containing:
4.5000 4.5000
4.5000 4.5000
[torch.FloatTensor of size 2x2]

如果它有更多的元素(矢量),你需要指定一个和tensor的形状匹配的grad_output参数(y在指定方向投影对x的导数)

x = torch.randn(3)
x = Variable(x, requires_grad=True) y = x * 2
while y.data.norm() < 1000:
y = y * 2 print(y)

输出结果:

Variable containing:
-1296.5227
499.0783
778.8971
[torch.FloatTensor of size 3]

不传入参数:

y.backward()
print(x.grad)

输出结果:

RuntimeError: grad can be implicitly created only for scalar outputs
None

传入参数:

gradients = torch.FloatTensor([0.1, 1.0, 0.0001])
y.backward(gradients)
print(x.grad)

输出结果:

Variable containing:
102.4000
1024.0000
0.1024
[torch.FloatTensor of size 3]

简单测试一下不同参数的效果:

参数1:[1,1,1]

x=torch.FloatTensor([1,2,3])
x = Variable(x, requires_grad=True)
y = x * x
print(y) gradients = torch.FloatTensor([1,1,1])
y.backward(gradients)
print(x.grad)

输出结果:

Variable containing:
1
4
9
[torch.FloatTensor of size 3]
Variable containing:
2
4
6
[torch.FloatTensor of size 3]

参数2:[3,2,1]

x=torch.FloatTensor([1,2,3])
x = Variable(x, requires_grad=True)
y = x * x
print(y) gradients = torch.FloatTensor([3,2,1])
y.backward(gradients)
print(x.grad)

输出结果:

Variable containing:
1
4
9
[torch.FloatTensor of size 3]
Variable containing:
6
8
6
[torch.FloatTensor of size 3]

PyTorch教程之Autograd的更多相关文章

  1. PyTorch教程之Training a classifier

    我们已经了解了如何定义神经网络,计算损失并对网络的权重进行更新. 接下来的问题就是: 一.What about data? 通常处理图像.文本.音频或视频数据时,可以使用标准的python包将数据加载 ...

  2. PyTorch教程之Neural Networks

    我们可以通过torch.nn package构建神经网络. 现在我们已经了解了autograd,nn基于autograd来定义模型并对他们有所区分. 一个 nn.Module模块由如下部分构成:若干层 ...

  3. PyTorch教程之Tensors

    Tensors类似于numpy的ndarrays,但是可以在GPU上使用来加速计算. 一.Tensors的构建 from __future__ import print_function import ...

  4. [转]搬瓦工教程之九:通过Net-Speeder为搬瓦工提升网速

    搬瓦工教程之九:通过Net-Speeder为搬瓦工提升网速 有的同学反映自己的搬瓦工速度慢,丢包率高.这其实和你的网络服务提供商有关.据我所知一部分上海电信的同学就有这种问题.那么碰到了坑爹的网络服务 ...

  5. jQuery EasyUI教程之datagrid应用(三)

    今天继续之前的整理,上篇整理了datagrid的数据显示及其分页功能 获取数据库数据显示在datagrid中:jQuery EasyUI教程之datagrid应用(一) datagrid实现分页功能: ...

  6. jQuery EasyUI教程之datagrid应用(二)

    上次写到了让数据库数据在网页datagrid显示,我们只是单纯的实现了显示,仔细看的话显示的信息并没有达到我们理想的效果,这里我们丰富一下: 上次显示的结果是这样的 点击查看上篇:jQuery Eas ...

  7. jQuery EasyUI教程之datagrid应用(一)

    最近一段时间都在做人事系统的项目,主要用到了EasyUI,数据库操作,然后抽点时间整理一下EasyUI的内容. 这里我们就以一个简洁的电话簿软件为基础,具体地说一下datagrid应用吧 datagr ...

  8. kali linux 系列教程之metasploit 连接postgresql可能遇见的问题

    kali linux 系列教程之metasploit 连接postgresql可能遇见的问题 文/玄魂   目录 kali linux 下metasploit 连接postgresql可能遇见的问题. ...

  9. kali Linux系列教程之BeFF安装与集成Metasploit

    kali Linux系列教程之BeFF安装与集成Metasploit 文/玄魂 kali Linux系列教程之BeFF安装与集成Metasploit 1.1 apt-get安装方式 1.2 启动 1. ...

随机推荐

  1. PyQt4简单小demo

    #coding=utf-8 import sys from PyQt4.QtCore import * from PyQt4.QtGui import * class FontPropertiesDl ...

  2. 线性代数-矩阵-【5】矩阵化简 C和C++实现

    点击这里可以跳转至 [1]矩阵汇总:http://www.cnblogs.com/HongYi-Liang/p/7287369.html [2]矩阵生成:http://www.cnblogs.com/ ...

  3. redis 介绍和常用命令

    redis 介绍和常用命令 redis简介 Redis 是一款开源的,基于 BSD 许可的,高级键值 (key-value) 缓存 (cache) 和存储 (store) 系统.由于 Redis 的键 ...

  4. C# 匿名对象(匿名类型)、var、动态类型 dynamic

    本文是要写的下篇<C#反射及优化用法>的前奏,不能算是下一篇文章的基础的基础吧,有兴趣的朋友可以关注一下. 随着C#的发展,该语音内容不断丰富,开发变得更加方便快捷,C# 的锋利尽显无疑. ...

  5. 两台主机之间单向Ping不通的问题

    p.p1 { margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px ".PingFang SC"; color: #454545 } p.p2 ...

  6. 1092: 最大价值(dollars) 算法 动态规划

    题目地址:http://www.hustoj.com/oj/problem.php?id=1092 题目描述 Dave以某种方法获取了未来几天美元对德国马克的兑换率.现在Dave只有100美元,请编程 ...

  7. Java企业微信开发_09_身份验证之移动端网页授权(有完整项目源码)

    注: 源码已上传github: https://github.com/shirayner/WeiXin_QiYe_Demo 一.本节要点 1.1 授权回调域(可信域名) 在开始使用网页授权之前,需要先 ...

  8. 通过createObjectURL实现图片预览

    实现原理:通过createObjectURL 创建一个临时指向某地址的二进制对象. 过程:点击触发隐藏的 input   file  的点击事件,使用createObjectURL读取 file,创建 ...

  9. MPLS VPN随堂笔记1

    MPLS VPN 基础 1.MPLS vpn架构的特点 1.1.允许不同CE传递相同私网路由 1.2.SP内部(所有P路由器)不需要学习CE路由 1.3.无安全保障但有带宽保障(跟SP租用服务) 2. ...

  10. Windbg DUMP

    Windbg DUMP分析(原创汇总) 1. 引入篇 1.1 下载安装 1.2 调试器 1.3 操作界面2. 命令篇 2.1 按照来源划分 2.1.1 基本命令 2.1.2 元命令 2.1.3 扩展命 ...