Andrew Ng机器学习课程笔记--week3(逻辑回归&正则化参数)
Logistic Regression
一、内容概要
- Classification and Representation
- Classification
- Hypothesis Representation
- Decision Boundary
- Logistic Regression Model
- 损失函数(cost function)
- 简化损失函数和梯度下降算法
- Advanced Optimization(高级优化方法)
- Solving the problem of Overfitting
- 什么是过拟合?
- 正则化损失函数(cost function)
- 正则化线性回归(Regularized Linear Regression)
- 正则化逻辑回归(Regularized Logistic Regression)
二、重点&难点
1. Classification and Representation
1) Hypothesis Representation
这里需要使用到sigmoid函数--g(z):
\[\begin{equation}
h_θ(x) = g(θ^Tx)
\end{equation}
\]
\[\begin{equation}
z = θ^Tx
\end{equation}
\]
\[\begin{equation}
g(z) = \frac{1}{1+e^{-z}}
\end{equation}
\]

2) Decision Boundary
决策边界:
\[h_θ(x) ≥ 0.5 → y=1 \]
\[h_θ(x) < 0.5 → y=0 \]
等价于
\[g(z) ≥ 0.5 → y=1 \]
\[g(z) < 0.5 → y=0 \]
等价于
\[z ≥0 → y=1 \]
\[z < 0 → y=0 \]
2. Logistic Regression Model
1) 逻辑回归的损失函数
这里之所以再次提到损失函数,是因为线性回归中的损失函数会使得输出呈现起伏,造成许多局部最优值,也就是说线性回归中的cost function在运用到逻辑回归时,将可能不再是凸函数。
逻辑回归的cost function如下:
\[J_θ = \frac{1}{m} \sum {Cost}( h_θ(x^{(i)}, y^{(i)} ) )\]
\[ {Cost}(h_θ(x), y) ) = - log(h_θ(x)) \quad \quad if \quad y=1\]
\[ {Cost}(h_θ(x), y) ) = - log(1 - h_θ(x)) \quad if \quad y=0\]
结合图来理解:
- y=1

由上图可知,y=1,hθ(x)是预测值,
- 当其值为1时,表示预测正确,损失函数为0;
- 当其值为0时,表示错的一塌糊涂,需要大大的惩罚,所以损失函数趋近于∞。
- y=0

上图同理
2) Simplified Cost Function and Gradient Descent
- 损失函数
cost function
\[Cost(h_θ(x), y) = -ylog(h_θ(x)) - (1-y)log(1-h_θ(x))\]
Jθ
\[J_θ=-\frac{1}{m} \sum Cost(h_θ(x), y) \]
\[\quad =-\frac{1}{m} \sum [-y^{i}log(h_θ(x^{(i)})) - (1-y^i)log(1-h_θ(x^{(i)}))] \]
- 梯度函数

3)高级优化方法

如图左边显示的是优化方法,其中后三种是更加高级的算法,其优缺点由图邮编所示:
优点
- 不需要手动选择α
- 比梯度下降更快
缺点
- 更加复杂
后面三种方法只需了解即可,老师建议如果你不是专业的数学专家,没必要自己使用这些方法。。。。。。当然了解一下原理也是好的。
3. Solving the problem of Overfitting
1) 过拟合
主要说一下过拟合的解决办法:
1)减少特征数量
- 手动选择一些需要保留的特征
- 使用模型选择算法(model selection algorithm)
2)正则化 - 保留所有特征,但是参数θ的数量级(大小)要减小
- 当我们有很多特征,而且这些特征对于预测多多少少会由影响,此时正则化怎能起到很大的作用。
2) 正则化损失函数

图示右边很明显是过拟合,因此为了纠正加入了正则化项:1000·θ32,为了使得J(θ)最小化,所以算法会使得θ3趋近于0,θ4也趋近于0。
正则化损失函数表达式:
\[J(θ)=\frac{1}{2m} [\sum_{i=1}^m( h_θ(x^{(i)}) - y^{(i)})^2 + λ\sum_{j=1}^n θ_j^2]\]
\[min_θ [\frac{1}{2m} (\sum_{i=1}^m( h_θ(x^{(i)}) - y^{(i)})^2 + λ\sum_{j=1}^n θ_j^2)]\]
3) 正则化线性回归
- 正则化梯度下降:
\[J(θ)=\frac{1}{2m} [\sum_{i=1}^m( h_θ(x^{(i)}) - y^{(i)})^2 + λ\sum_{j=1}^n θ_j^2]\]
\[\frac{∂J_θ}{∂θ_j} = \frac{1}{m} \sum_{i=1}^m( h_θ(x^{(i)} ) - y^{(i)} )x_j^{(i)} + \frac{λ}{m}θ_j \]
Repeat{
\[θ_0 := θ_0 - α\frac{1}{m}\sum_{i=1}{m}( h_θ(x^{(i)} ) - y^{(i)} )x_0^{(i)}\]
\[θ_j := θ_j - α[(\frac{1}{m}\sum_{i=1}{m}( h_θ(x^{(i)} ) - y^{(i)} )x_0^{(i)} ) + \frac{λ}{m}θ_j ] \quad j∈\{1,2,3……n\}\]
}
- 正则化正规方程

前面提到过,若m< n,那么XTX是不可逆的,但是加上λ·L后则变为可逆的了。
4) 正则化逻辑回归
\[J(θ)=-\frac{1}{m} \{\sum_{i=1}^m[ y^{(i)} log(h_θ(x^{(i)}))+(1-y^{(i)})log(1-h_θ(x^{(i)}))]\} + \frac{λ}{2m}\sum_{j=1}^n θ_j^2\]
梯度下降过程

Andrew Ng机器学习课程笔记--week3(逻辑回归&正则化参数)的更多相关文章
- 【原】Coursera—Andrew Ng机器学习—课程笔记 Lecture 7 Regularization 正则化
Lecture7 Regularization 正则化 7.1 过拟合问题 The Problem of Overfitting7.2 代价函数 Cost Function7.3 正则化线性回归 R ...
- Andrew Ng机器学习课程笔记--汇总
笔记总结,各章节主要内容已总结在标题之中 Andrew Ng机器学习课程笔记–week1(机器学习简介&线性回归模型) Andrew Ng机器学习课程笔记--week2(多元线性回归& ...
- Andrew Ng机器学习课程笔记(二)之逻辑回归
Andrew Ng机器学习课程笔记(二)之逻辑回归 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7364636.html 前言 ...
- Andrew Ng机器学习课程笔记(五)之应用机器学习的建议
Andrew Ng机器学习课程笔记(五)之 应用机器学习的建议 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7368472.h ...
- Andrew Ng机器学习课程笔记(四)之神经网络
Andrew Ng机器学习课程笔记(四)之神经网络 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7365730.html 前言 ...
- Andrew Ng机器学习课程笔记(三)之正则化
Andrew Ng机器学习课程笔记(三)之正则化 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7365475.html 前言 ...
- Andrew Ng机器学习课程笔记--week1(机器学习介绍及线性回归)
title: Andrew Ng机器学习课程笔记--week1(机器学习介绍及线性回归) tags: 机器学习, 学习笔记 grammar_cjkRuby: true --- 之前看过一遍,但是总是模 ...
- Andrew Ng机器学习课程笔记(六)之 机器学习系统的设计
Andrew Ng机器学习课程笔记(六)之 机器学习系统的设计 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7392408.h ...
- Andrew Ng机器学习课程笔记(一)之线性回归
Andrew Ng机器学习课程笔记(一)之线性回归 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7364598.html 前言 ...
随机推荐
- js中嵌入jsp(html)代码的双引号转换问题--事件没反应
下面是一段今天遇到问题的代码,select中写了onchange事件 ,在没有加转义的情况下,F12解析的代码是错乱的,双引号与内容中写的不一致,还会有空格出现,经过一段时间的摸索,发现在出错的地方加 ...
- CJOJ 2171 火车站开饭店(树型动态规划)
CJOJ 2171 火车站开饭店(树型动态规划) Description 政府邀请了你在火车站开饭店,但不允许同时在两个相连的火车站开.任意两个火车站有且只有一条路径,每个火车站最多有 50 个和它相 ...
- tp框架表单验证 及ajax
之前的表单验证都是用js写的,这里也可以使用tp框架的验证.但是两者比较而言还是js验证比较好,因为tp框架验证会运行后台代码,这样运行速度和效率就会下降. 自动验证是ThinkPHP模型层提供的一种 ...
- 基于android的语音质量评估
最近研究如何通过android评估通话质量,希望获取的参数有:(1)接通时长 (2)掉话次数 (3)语音是否清晰,以下将给出接通时长和掉话次数的详细定义: 接通时长:通话一方开始拨号到另一方开始振铃的 ...
- [vijos 1642]班长的任务 [树形dp]
背景 十八居士的毕业典礼(1) 描述 福州时代中学2009届十班同学毕业了,于是班长PRT开始筹办毕业晚会,但是由于条件有限,可能每个同学不能都去,但每个人都有一个权值,PRT希望来的同学们的权值总和 ...
- Jenkins2 实现持续交付初次演练(MultiJob,Pipeline,Blue Ocean)
背景 项目需要用到自动部署,但可获取外网的节点机器只有一台,那只能同过主节点机器进行构建完成然后分发至对应服务器进行启动更新. 目前已尝试过三种方式: 1.Pipeline-Trigger param ...
- synchronized Lock用法
在介绍Lock与synchronized时,先介绍下Lock: public interface Lock { void lock(); void lockInterruptibly() throws ...
- (转)java提高篇(一)-----理解java的三大特性之封装
从大二接触java开始,到现在也差不多三个年头了.从最基础的HTML.CSS到最后的SSH自己都是一步一个脚印走出来的,其中开心过.失落过.寂寞过.虽然是半道出家但是经过自己的努力也算是完成了“学业” ...
- C# 对xml进行操作
一:xml的基本操作 (1)获得xml文件中的数据 //创建xml文档对象 XmlDocument xmlDoc = new XmlDocument(); //将指定xml文件加载xml文档对象上 x ...
- Eclipse中安装MemoryAnalyzer插件及使用
Eclipse中安装MemoryAnalyzer插件 一.简介 Eclipse作为JAVA非常好用的一款IDE,其自带的可扩展插件非常有利于JAVA程序员的工作效率提升. MemoryAnalyzer ...